Sea Grant Depository

WAVE FORCES ON A SUBMERGED OBJECT

By
John E. Halkyard

Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

CIRCULATING COPY
 Sea Grant Depository

Wave Forces On A Submerged Object

By
John E. Halkyard

WAVE FORCES ON A SUBMERGED OBJECT

by

John E. Halkyard

Abstract

An experimental and theoretical investigation is conducted into the nature of the wave motion past (and under) a semi-circular cylinder suspended a short distance above the sea bottom. Particular attention is drawn to the flow through the gaps at the cylinder's edges.

The flow is represented by replacing the gaps by a fluid source and a fluid sink respectively. The strength of the source and sink is found by a semi-intuitive matched asymptotic expansion scheme. The pressures both inside and outside the cylinder are computed and the resulting forces plotted.

A significant reduction in the horizontal force is noted for very small gap widths. This result is supported by force measurements in the wave tank, as is the discovery that the vertical force is largely affected by a first order constant pressure acting inside the cylinder.

Reflection coefficients measured in the tank showed less correlation to the theory, mostly due to sensitivity to beach reflected waves.

The extension of this theory to three-dimensional objects is discussed, and a comparison is made with other investigators' data.

ACKNOWLEDGMENTS

The author would like to express his appreciation to the Chicago Bridge and Iron Company for their support of this work, and especially to Mr. James Stevens who introduced the author to the problems of wave forces.

Throughout the work, Professor Jerome Milgram has offered enthusiastic and enlightening supervision.

Mr. Robert Peterson assisted in the collection of data, and a program donated by Mr. Richard Sidell allowed the digitized data to be used on the System 360 computer.

The author would like to thank Mr. Dean Lewis and his staff of the Marine Hydrodynamics Laboratory for their help, as well as that of Mr. Edward Kern.

Mrs. Viola Liddell is responsible for the typing, and is to be thanked for a superb job under rather hurried circumstances. Computations for this thesis were conducted on the IBM 360 M65 computer of the MIT Information processing Center.

ADMINISTRATIVE STATEMENT

The study resulting in this report, "Wave Forces on a Submerged object" was carried out as a research project for Chicago Bridge and Iron Company and concurrently fulfilled the author's Doctoral Thesis requirements.

The information in this report is of particularly timely interest in view of the many and varied proposals for offshore petroleum storage systems inspired by the original and successful Chicago Bridge and Iron Company installation in the Middle East. This research on the nature of wave motions is an important contribution to understanding the resultant effects on such underwater structures. This understanding is important in providing some of the engineering considerations that can be applied, thereby enhancing the system design and reducing pollution potential.

The printing and distribution of this special edition of the report was organized by the M.I.T. Sea Grant Project Office under the project established to expedite dissemination of important studies and/or research findings developed at M.I.T. under other than Sea Grant support.

This valuable information dissemination is made possible with funds from a grant by the Henry L. and Grace Doherty Charitable Foundation, Inc. to the M.I.T. Sea Grant Program and in part by the research support from Chicago Bridge and Iron Company.

Alfred A. H. Keil
Director

November 1, 1971

TABLE OF CONTENTS

Page
Title Page. 1.
Abstract 2.
Acknowledgments 3.
Administrative Statement 4.
Table of Contents 5.
Nomenclature 8.
List of Figures 11.
List of Tables 13.
Bibliography. 14.
I. Introduction 18.
I.l The Problem of Exciting Forces 20.
I. 2 Survey of the Methods 21.
I.2.1 Matching Polynomial Coefficients 21.
I.2.2 Integral Equation Method 21.
I.2.3 The Variational Method 22.
I.2.4 Other Approaches 23.
I. 3 Recent Work on Large Submerged Objects 27.
I. 4 Scope of the Thesis and Approach 29.
II. Statement of the Problem 31.
II. 1 The Outside Region. 34.
II. 2 The Inside Region. 38.
II. 3 Flow Adjacent to Gaps 39.
III. Solution. 43.
III. 2 Solution for the Inside Region 49.
III. 3 Solution for the Inner Flow 52.
III. 4 Accuracy of the Solutions 56.
IV. Matching the Solutions 57.
IV. 1 Heuristic vs. Formal Matching Schemes 66.
IV. 2 Matching by Means of an Intermediate Solution. 71.
IV. 3 Discussion of Matching Results 77.
IV. 4 Uniqueness of Matched Solution 79.
IV. 5 Flow Impedance 84.
V. Forces on the Cylinder, Reflection Coefficients 89.
V.l A Simplified Theory 95.
V. 2 Reflection and Transmission Coefficient 99.
V. 3 Forces on Three-Dimensional Structures 108.
V. 4 Experiments on Two-Dimensional Shapes 115.
VI. Experimental Investigation 118.
VI. 1 Forces on an Object in a Real Fluid 119.
VI. 2 Considerations in the Analysis of Test Data 126.
vi.2.1 Horizontal Forces 130.
VI.2.2 Vertical Forces 133.
VI.2.3 Moments 133.
VI. 3 Experimental Test Setup 135.
VI.3.1 The Wave Tank 140.
VI.3.2 The Wave Absorbing Beach 140.
VI.3.3 The Dynamometer 141.
VI.3.4 The Wave Probes 143.
VI.3.5 Analog Signal Processing 145.
VI.3.6 The Test Section 148.
VI. 4 Instrument Calibration 149.
VI.4.1 Wave Probe Calibration 149.
VI.4.2 Dynamometer Calibration 151.
VI. 5 Signal Processing and Analysis 153.
VI.5.1 Dynamic Effects 155.
VI.5.2 Added Mass Computations From System Vibrations. 157.
VI.5.3 Force Computations 161.
VI.5.4 Reflection and Transmission Coefficients 162.
VI. 6 Presentation of Results 164.
VI. 7 Real Flow Through Gaps 176.
VII. Conclusions 184.
Appendices
A. An Alternate Matching Scheme 187.
B. Green's Function 197.
C. Asymptotic Limits of $\cosh ^{-1} \mathrm{iz}$ 200.
D. Numerical Filtering of Data 202.
E. Radiation From an Oscillating Cylinder 207.
F. Listing of Computer Programs *
G. Computer Output of Fourier Analyzed Data *
H. Output of Data Before Fourier Analysis *

* Appendices F, G and H have been omitted from this report due to their size. Anyone wishing to refer to them may refer to the original thesis or contact the author c/o Department of Ocean Engineering, M.I.T., Cambridge, Massachusetts 02139.

NOMENCLATURE

$(x, y), \vec{r},(\xi, \eta), \vec{\rho}$ Cartesian coordinates from center of cylinder
$\left(X_{L}, Y_{L}\right),\left(X_{R}, Y_{R}\right) \quad$ Inner coordinates
(r, θ)
$\left(X_{L}, Y_{L}\right),\left(X_{R}, Y_{R}\right)$ Intermediate variables
Z_{L}, Z_{R}

A

B
${ }^{\mathrm{B}} 11$
C_{D}
rison equations
ts for wave probes
for inner flow
erivation of the low
ler outside flow

$\mathrm{C}_{W 1}, \mathrm{C}_{W 2}, \ldots$	Calibration coeffic
$\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots$	Capacitance
$\mathrm{C}_{\mathrm{L}}, \mathrm{C}_{\mathrm{R}}$	Bernoulli's constan
D	Water depth
F (x, y)	Function used in th second order outsid
F_{H}	Horizontal force
F_{V}	Vertical force
$\mathrm{G}(\mathrm{x}, \mathrm{y} \mid \boldsymbol{\xi}, \mathrm{n})$	Green's function
$\mathrm{H}(\mathrm{x}, \mathrm{y}), \mathrm{H}_{\mathrm{L}}, \mathrm{H}_{\mathrm{R}}$	Function in second
I	Impedance

$J(\mathrm{x}, \mathrm{y})$	Function in second order inside flow
K	Wave number
M	Moment
$\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{t})$	Pressure
Q(E)	Source strength of gap flow in radiation problem
R	Cylinder radius
R_{i}	Resistance of $i^{\text {th }}$ resistor
S_{i}	Signal of $i^{\text {th }}$ channel
T	Wave period
T_{V}	Natural period of cylinder in vertical direction
T_{H}	Natural period of cylinder in horizontal direction
U_{m}	Maximum horizontal particle velocity
U	Horizontal velocity
v	Volume enclosed by cylinder
V_{n}	$n^{\text {th }}$ harmonic of vertical force
V_{H}	Voltage of horizontal force channel
V_{V}	Voltage of vertical force channel
$\left(\mathrm{X}_{s}, \mathrm{Y}_{s}\right)$	Inner coordinates defining cylinder surface
a	Wave amplitude
d	Gap width
g	Gravitational acceleration
k_{i}	Calibration coefficient for $i^{\text {th }}$ load cell
$\stackrel{\rightharpoonup}{\mathbf{u}}$	Velocity
\mathbf{r}	$\sqrt{(x-\xi)^{2}+(y-\eta)^{2}}$
$r_{\text {L }}$	$\sqrt{(x+1)^{2}+y^{2}}$
r_{R}	$\sqrt{(x-1)^{2}+y^{2}}$

$\left(x_{s}, y_{s}\right)$	Coordinates defining cylinder surface
$\alpha(\varepsilon)$	Gage functions
δ	Ka
ε	Ratio of gap width to cylinder radius
	Wave elevations
Γ	Circulation
λ	Wave length
ω	Circular frequency
v	ω^{2} / g
ρ	Density
τ	Transmission coefficients
$\Phi(\mathrm{X}, \mathrm{Y}, \mathrm{t})$	Velocity potential
$\bar{\phi}$	Velocity potential outside cylinder
$\ddot{\phi}$	Velocity potential inside cylinder
$\hat{\phi}$	Velocity potential near gaps
ϕ_{s}	Scattered velocity potential
$\phi_{\mathbf{x o}}$	First order scattered potential

LIST OF FIGURES

[Figures marked with (G) are graphs]
Page
I.l Schematic Drawing of Oil Storage Tank 19.
I. $2 C_{D}$ Plotted Against $U_{m} T(2 R)$ from Test Data 26.
I. $3 \mathrm{C}_{\mathrm{M}}$ Plotted Against $\mathrm{U}_{\mathrm{m}} \mathrm{T} /(2 \mathrm{R})$ from Test Data 26.
II. 1 Sketch Defining Coordinate System and Problem Parameters 31.
II. 2 Regions of Flow 40.
III.1 Relationship of r_{L} and r_{R} on Inside Boundary 49.
III. 2 Flow Through Gap 52.
III. 3 Flow Through Slit 53.
III. 4 ち-Plane 54.
IV. 1 Inner Flow Region 62.
IV. 2 Conceptualization of Matching (G) 66.
IV. 3 Solutions in All Regions 72.

List of Figures (continued)

Page

VI. 3 Schematic of Wave Tank Configuration136.VI. 4 Beach Reflection Coefficient (G) 142.
VI. 5 Analog Processing Circuits for Forces and Moment 147.
VI. $6 \quad F_{H}$ Response for Impulsive Load (G) 155.
VI. 7 Horizontal Force Coefficient for $R / D=.50$ (G) 170.
VI. 8 Horizontal Force Coefficient for $R / D=.60$ (G) 171.
VI. 9 Vertical Force Coefficient for $R / D=.50$ and $\mathrm{R} / \mathrm{D}=.60$ (G) 172.
VI. 10 Computed and Measured Phase of Vertical Force
for $R / D=.50$ and $R / D=.60$ (G) 173.
VI. 11 Computed and Measured Phase of Horizontal Force for $R / D=.50$ 174.
A.I Transmission Through a Slit 187.
D. 1 Wave Record 204.
PLATES
1 Experimental Set-up Including Wave Tank and
Instrumentation 137.
2 Semi-circular Cylinder Shown in Test Position 137.
3 Cylinder Shown Attached to 3-Component Dynamometer. 138.
4 Close-up of Dynamometer 138.
5 Wave Generator Showing Motor, Gear Reduction Boxes, Flywheel, Paddle and Linkage 139.
6 Looking Upstream from Dynamometer Towards the Wave Paddle 139.
7 Flow Visualization, $\mathrm{U}_{\mathrm{m}} \mathrm{T} / \mathrm{R}=1.60$ 178.
8 Flow Visualization, $U_{m} T / R=1.20$ 179.
9 Flow Visualization, $U_{m} T / R=.96$ 180.
10 Flow Visualization, $\mathrm{U}_{\mathrm{m}} \mathrm{T} / \mathrm{R}=.092$ 181.
1 1 n...inann in onditinn for "ppro-Gan" Tests 182.

LIST OF TABLES

Page
V. $1 C_{M}$ Computed by eqn. V. 18 and by Program 99.
VI.l Wave Probe Position 150.
VI. 2 Wave Probe Calibration 150.
VI. 3 Horizontal Force Calibration Data 152.
VI. 4 Results for Cylinder Vibration Tests 160.
VI. 5 Results for Test Runs 9-17 175.
E. 1 Forces Computed via Haskind's Relation Compared with those Computed by Scatter- ing Program 214.

BIBLIOGRAPHY

Ashley, Holt (1966) "Machine Computation of Aerodynamic Loads in Linear and Non-Linear Situations", MIT Fluid Dynamics Res. Lab. Rpt. No. 66-5.

Black, J. L. and Mei, C. C. (1970) "Scattering and Radiation of Water Waves", MIT Water Resources and Hydro. Lab. Report No. 121. Also Journal of Fluid Mechanics, 46, 151-164.

Blackman, R. B. and Tuckey, J. W. (1958) "The Measurement of Power Spectra", Dover Publications, New York.

Borgman, L. E. (1967) "Ocean Wave Simulation for Engineering Design", Hydraulic Engrg. Lab. Report HEL 9-13, University of Calif., Berkeley.
Chamberlin, R. S. (1969) "Design Considerations - Offshore Storage", Oceanography Conference, Brighton, England.

Cole, J. D. (1968)"Perturbation Methods in Applied Mathematics" , Ginn Blaisdell, Waltham, Massachusetts

AD:

Davenport, W. E. Jr. and Roo=̄, W. C . (1958; , An Incroduction to the Theory of Kandom Signals and Noise, New York, McGraw Hill.

Den Hartog, J. P. (1956), Mechanical Vibrations, New York, McGraw Hill.

Garrison, C. J., Rao, R. S. and Snider, R. H. (1970, "Wave Interaction with Large Submerged Objects", ASCE Nat'l. Structural Engineering Mtg., Portland, Oregon.

Garrison, C. J. (1971), personal communication.
Grace, R. A. and Casciano, F. M. (1969), "Ocean Wave Forces on a Submerged Sphere", Jour. Waterways and Harbors Div. A.S.C.E., WW3, August

Guiney, D. C. (1971), "Transmission of Water Waves through a Gap in a Thin Barrier", unpublished paper, Dept. of Applied Math., Univ, of Adelaide, Australia.

Haskind, M. D. (1957), "The Exciting Forces and Wetting of Ships in Waves (in Russian), Izvestia Akademii Nauk, U.S.S.R., Otdelenie Tekhnicheskikh Nauk, \#7, pp. 65-79 (English translation available as David Taylor Model Basin Translation No. 307, March, 1967).

Havelock, Sir Thomas (1955), "Wave Forces due to a Floating Sphere Making Periodic Heaving Oscillations", Proc. Royal Soc., London, v .231

Herbich, J. B. and Shank, G. E. (1970), "Forces Due to Waves on Submerged Structures", Texas A. \& M. Sea Grant Report TAMU-SG-70-212

Itokawa, H. (1969), "Undersea Oil Storage System", Technical Research Society for Undersea Oil Storage, Tokyo, Japan.

John, F. (1950), "On the Motion of Floating Bodies", I, II Comm. Pure Appl. Math., 2, pp. 13-57.

Kaplun, S. (1954), "The Role of Coordinate Systems in Boundary Layer Theory", Z. Angew. Math. Phys. 5, lll-l35.

Kern, Edward C., Jr. (1971), "Exciting Forces on Oil Pollution Control Barriers in Waves and Currents", MIT M.S. Thesis, Dept. of Ocean Engineering.

Kreisel, G. (1949), "Surface Waves", Quart. Appl. Math., Vol. VII, p. 21.

Lagerstrom, P. A. and Cole, J. D. (1955), "Examples Illustrating Expansion Procedures for the Navin Stokes Equations", J. Rat. Mech. Anal. 4, 817-882.

Lewin, Myra (1963), "The Effect of Vertical Barriers on Progressing Waves", J. Math. Phys., 42, p. 287.

McCany, R. C. and Fuchs, R. A. (1954), "Wave Forces on Piles: a Diffraction Theory", U.S. Army Corps of Engrs., Beach Erosion Board, Tech. Memo, No. 69.
Mei, C. C. (1969), "Weak Reflection of Water Waves by Bottom Obstacles", Proc. A.S.C.E., Engrg. Mech. Div., 95, EMl.
Milgram, J. N. and Halkyard, J. E. (1971). "Wave Forces on Submerged Objects in the Sea", Jour. Ship Research, I5,
No. 2 .

Morison, J. R., O'Brien, M. P., Johnson, J. W., and Schaaf, S. A. (1950), "Ihe Force Exerted by Surface Waves on Piles*, Petroleum Trans., Amer. Inst. Mining Engrs., Vol. 189, pp. 149-154.
Morse, P. M., and Feshbach, H. (1953), "Methods of Theoretical Physics", New York, McGraw-Hill.
Motora, S. and Koyama, T. (1966), "Wave Excitationless Ship Forms", Proc. Sixth Symp. on Naval Hydrodynamics, 383413.

Newman, J. N. (1962), "The Exciting Forces on Fixed Bodies in Waves", J. Ship Research, Dec.
Newman, J. N. (1965) "Propagation of Water Waves Past Long Low Iwo-dimensional Objects" J. Fluid Mechs., 23

Newman, J. N. (1969) "Lateral Motion of a Slender Body Bétween two Parallel Walls" J. Fluid Mechs., 39

Newman, J. N. (1970) "Marine Hydrodynamics", lecture notes for a course at M. I. T., Dept. of Ocean Engineering.

Newnan, J. N. (1971) "Diffraction of Water Waves" to be published in Applied Mechanics Reviews
 by Waves on Objects", Trans. Amer Geopnys: Uniori..... v.-33, No.-1

Prandtl, L. (1905), Über Flüssigkeiten bei sihr kleiner Reibung. Verh. III, Internat. Math. Kongr., Heidelberg, (English trans.: "Motion of Fluids with Very Little Viscosity", Tech. Memo. N.A.C.A., No. 452, 1928).

Prandtl, L. and Tiejtens, O. J. (1934), Applied Hydro. and Aero. Mech., New York, McGraw-Hill.

Rayleigh, Lord (1877), "On Progressive Waves", Proc., London Math. Soc., V. 9.
Thorne, R. C. (1953), "Multipole Expansions in the Theory of Surface Waves", Proc. Camb. Phil. Soc., 49.
Tuck, E. O. (1970), "Transmission of Water Waves Through Small Apertures", J. Fluid Mech., 49.
Ursell, F. (1950), "Surface Waves on Deep Water in the Presence of a Submerged Circular Cylinder". I and II, Proc. Camb. Phil. Soc., 46.

Van Dyke, M. (1964), Perturbation Methods in Fluid Mechanics, Acad. Press, N. Y.

Widnall, S. and Barrows. T. (1970), "Wings in Ground Effect", J. Fluid Mech., 4l, 4.

Wiegel, R. L. (1964), Oceanographical Engineering, New York, Prentice-Hall.

Wiegel, R. L., Beebe, K. E., and Moon, J. (1957), "Ocean Wave Forces on Circular Cylindrical Piles", J. Hyd. Div., A.S.C.E., 83, HY2, paper 1199.

I. INTRODUCTION

Recent discovery and subsequent production of oil fields far offshore has spurred considerable interest in the concept site storage and loading of crude oil as an alternative lizing long pipelines. The economic savings in both 1 expenditures and operating costs introduced by ing structures for the submerged storage of oil have iscussed by Chamberlin (1969)* The Chicago Bridge and installed the first-submerged oli storage iann - n Gulf in August, 1969. This tank consists of steel structure approximately 250 feet in

75 feet high. A 30-foot diameter riser peneee surface. The tank has a capacity of 500,000 ude oil (about 75,000 tons), and sits in 156 - The tank operates on a water displacement t is free flooding through ducts and openings e ringwall so that as oil is pumped down the ie tank water passes out the bottom.
$\therefore 1$ shows schematically the operation of the

[^0]
Iron Compa

in the Per
a dome-sha
diameter a
trates the
barrels of
feet of wa
principle.
about its
riser intc
the protot
structed

[^1]a steel ellipsoidal base and was capable of holding up to 10,000 gallons.

age, large
le cities
rallenges in
วf maximum
ves. The
; are
ring and and "Science Llable from it is the - Navy," quy.

Naturally, one of the greatest engineering the design of these structures is the predictic design loadings under the influence of surface problems related to the prediction of these for
*See, e.g., Commission on Marine Science, Engin Resources, "Our Nation and the Sea," Jan. 1969 and Environment," Vols. 1-3, Feb. 1969, both a the superintendent of Documents. Also of inte report "The Ocean Engineering Program of the U Sept. 1967, Office of the Oceanographer of the
complicated by the fact that the structures are large compared with the wave lengths encountered so that significant scattering of the waves takes place. Traditional civil engineering methods for calculating forces on piles and other small objects in the coastal zone are no longer sufficient.

This realization has slowly crept into the engineering community as witnessed by the proliferation of studies into the forces on submerged objects in recent years.

I. 1 The Problem of Exciting Forces

In many ways, the problems associated with wave interaction with large submerged objects are the same as those which have been under study for years by naval architects in connection with the exciting forces on ships and other floating objects.

Haskind (1957) derived in exact (within linear theory) relationship between the exciting (wave) forces on an object and its damping coefficient in harmonic motion thus leading to a simplification in most cases of the work involved in calculating the forces. Earlier work by Havelock (1955), Ursell (1950) and others provided theories for the damping coefficients and added mass of simple geometries, both floating and submerged, which could subsequently be utilized to compute wave forces via Haskind's relations.

Newman (1960) utilized Haskind's relations to find the exciting forces on a submerged ellipsoid (in three dimensions)
and an ellipse (in two dimensions).

I. 2 Survey of the Methods

The methods used in the calculation of wave forces (or the added mass and damping in the case of radiation) vary in their numerical complexity and in the information which they yield. Usually the complexity increases as more information is desired.

I. 2.1 Matching Polynomial Coefficients

Ursell's method (Ursell, 1950) has been the most popular approach until recently. This method involves the following procedure: describe the flow by a polynomial expansion, including a source term, about the origin plus a radiated wave of unknown amplitude. Divide the object into a finite number of grids; N, and write the boundary condition on each of the grids in terms of the polynomial expansion. The equations may then be solved algebraically for the unknown polynomial coefficients if the solution is approximated by a polynomial of degree N-1. This method leads to a near field solution for the flow to any degree of approximation desired, depending only on the number of grid points taken.
numerical solution of the integral equation has been widely used in the prediction of loads on airfoils (see, e.g., Ashely, 1966), but the complexity of the Green's function with the inclusion of free surface effects has discouraged its use in water wave problems. Recent advances in computer design and performance have largely reduced the difficulties, however, and this approach offers many practical advantages

be written to account for a wide variety of general shapes, and may even be incorporated in a general design program to calculate tradeoffs for various shapes, depths, etc.

Kim (1962) used the integral equation method to find the damping and added mass coefficients of rolling or heaving disk in the free surface. The forces on submerged threedimensional objects have been calculated by Milgram and Halkyard (1971) and Garrison, et al (1970). Garrison in
$=-\infty \quad$ anditinnnerfncmed some experiments on a submerged dome. Mei weak reflection of waves by a bottom oximate solution to the Fredholm
(1969) calculated t obstacle using an a integral equation.

Method

nsiderably more finesse than either of methods is the variational method.

I.2.3 The Variation

A scheme with
the previously stat

This method has been utilized extensively in electromagnetic theory (see, e.g., Collin, 1960, Chapter 8), and has been applied to scattering and radiation of surface waves by Miles (1967), Black et al (1971), and Miles and Gilbert (1969) among others. The variational approach allows the computation of radiated waves (and thus the exciting forces via Haskind's relations) with greatly reduced numerical effort. This method does not, however, yield the near field flow conditions. For engineering purposes, the net forces computed by such a scheme may be helpful in foundation design, but the distribution of pressures is essential information for structural considerations. Either of the previous methods would be preferable from this point of view.

A complete discusssion of scattering, or diffraction, of ocean waves is beyond the scope of this thesis. A general and thorough discussion of wave interactions may be found in Wehausan and Laitone (1960), and an up-to-date review of the literature is given by Newman (1971).

I.2.4 Other Approaches

Running a parallel, though seemingly unassociated, course with the investigations mentioned above, which were mainly associated with naval architectural problems, was the "coastal engineering" approach. This approach was initially developed for the determinations of wave loads on vertical piles such as those used as dock supports and as
structural members in the "Texas Tower" type oil rigs. An extensive dependence on empirical observation, plus the combined conclusions of hydrodynamicists back to the studies of pendulums in a viscous fluid by G. G. Stokes in 1851, led Morison and his co-investigators (Morison, et al, 1950) to the conclusion that the total force on an ocean structure could be divided into two components: a drag force and an inertial force. This conclusion gives rise to the well known "Morison equation" which has been almost universally adopted by the coastal engineering community:

$$
\begin{equation*}
F=F_{D}+F_{M}=\frac{1}{2} C_{D} \rho A_{p} u|u|+C_{M} \rho F \frac{\partial u}{\partial t} \tag{I. 1}
\end{equation*}
$$

where

$$
\begin{aligned}
F & =\text { total force on an object in the direction of } u \\
F_{D} & =\text { drag force } \\
F_{M} & =\text { inertial force } \\
C_{D} & =\text { drag coefficient } \\
\rho & =\text { mass density of fluid (sea water }=2.0 \text {) } \\
A_{\mathrm{P}} & =\text { area of object projected on plane perpendicular } \\
\mathrm{u} & =\text { velocity of fluid } \\
C_{M} & =\text { inertial coefficient } \\
V & =\text { submerged volume of the object }
\end{aligned}
$$

A great deal of study has been done on the forces on sumerged objects under the assumption that the Morison
equation correctly accounted for the forces. o'Brien and Morison (1952), and more recently Grace and Casciano (1969) have correlated C_{M} and C_{D} to experimental observations of forces on small submerged spheres. Extensive measurements and further correlation of C_{M} and C_{D} for vertical piling was . carried out by Wiegal, Beebe and Moon (1957). Their tests, conducted in an open ocean environment, showed considerable scatter of data (see Figures I. 2 and I.3) which was subsequently explained and corrected by Borgman (1967) through a spectral analysis of the wave records.

Considerably better correlation of C_{M} and C_{D} with experiment was obtained by Keulegan and Carpenter (1958) under laboratory conditions, and with the allowance that C_{M} and C_{D} may vary over a wave cycle. A detailed discussion of their approach is included in Chapter VI of this thesis.

Other tests have been undertaken. Wiegel (1964) offers an extensive survey of these tests and some of the theoretical advances.

Since the Morison formula was originally introduced as a device to predict wave forces on small diameter piles, its acceptability for objects which exhibited scattering was not well understood until subsequent developments, some of which were mentioned above. In particular, MacCamy and Fuchs (1954) calculated the effect of diffraction of piles and concluded that diffraction not only affected the magnitude of

Figure I. 2
C_{D} PLOTTED AGAINST $U_{m} T /(2 R)$ FROM TEST
DATA (from wieģel, 1964). VERTICAL CYLINDER RADIUS $=R$.

Figure 1.3
C_{M} PLOTTED AGALNST $U_{m} T /(2 R)$ FROM TEST DATA (from Wiegel, 1964). VERTICAL
GYLINDER RADIUS $=\mathrm{R}$.
C_{M}, but that the phase of the inertial force must also be altered if diffraction is to be taken into account. This result led to later generalizations of the Morison equation, such as that used by Motora and Koyama (1966):

$$
\begin{equation*}
F=k_{1} \frac{\partial u}{\partial t}+k_{2} u|u|+k_{3} u \tag{I. 2}
\end{equation*}
$$

where k_{1}, k_{2} and k_{3} are coefficients to be determined either experimentally or theoretically.

This equation certainly has more appeal for large ocean structures. A simplification of the equation is made for the case of large structures by observing that, for all but the largest waves, the drag forces are of a second order to the inertial forces.

In this thesis Morison's equation is introduced in a modified form allowing C_{M} to take on complex values to account for the phase shift. The magnitude of C_{M} then provides a non-dimensional horizontal force measurement as well as a coefficient for engineering comparison.

I. 3 Recent Work on Large Submerged Objects

The advent of large submerged objects in the sea has brought the theoretical approaches of the naval architects into the field of coastal or "ocean" engineering. Recent diffraction studies, primarily those of Milgram and Halkyard (1971) and Rao and Garrison (1970) have been motivated by the Chicago Bridge and Iron Company's oil storage tank, as have
been the experimental studies of Herbich and Shank（1970）． This author＇s work has been largely sponsored by that com－ pany，while，needless to say，many proprietary studies have been conducted by various concerns．

There is yet to appear a comprehensive theory to take into account all the factors influencing the force on these types of structures．Even if we restrict ourselves to linear theory（where everything is proportional to the wave height） the following questions have not been satisfactorily answered：

1．What effect does structural deflection have on the total loads？
ater under the
zed in the
heories to date has inderneath the struc－ ce in the full scale

Illy devised experiment， ：egard，it is interest－ 10），in conducting force

11 shapes，actually had reasuring the pressures

3．What effect does the flow o tank have on the net loads？

4．How can these effects be ut improvement of the design？

The most conspicuous failure o been the failure to account for flc ture，an effect which surely takes tank and，except under the most car in the model tests as well．In thi ing to note that Rao and Garrison measurements on submerged hemispher to correct for the bottom effects k
inside the model and subtracting the uplift resulting from this pressure from the total measured loads. This corrected force compared reasonably well with their diffraction theory, which accounted for only the pressures on the outside of the hemisphere.

The present work is aimed at gaining an understanding of the effect of flow about the bottom of a submerged object. A cylinder is selected, rather than the more realistic hemisphere, since the theory in this case is simpler and a more meaningful experiment could be carried out in the facilities available. In principle, the methods used here could be used to compute the effects on a three-dimensional object, provided more computation time could be afforded and a large wave tank were available to compare results.

The present problem was selected because it offers the opportunity to develop a "complete" diffraction theory for a physically realizable situation which can be tested in the laboratory. The geometry selected is that of a semi-circular cylinder mounted close to the horizontal bottom.

The flow through the slits at the bottom of each side of the cylinder is accounted for by assuming a source of unknown strength at one gap and a sink of equal strength at the other. Locally, the flow through the gaps is treated as the flow through an orifice in an infinite wall, and the source
strength is adjusted so that these two approximations agree within a certain "intermediate" region.

This approach is a simple and straightforward application of the method of matched asymptotic expansions as used by Tuck (1971). Strictly speaking, it is only valid for small gap widths, as determined by the ratio of gap width to cylinder radius $(=\varepsilon)$, although recent exact solutions by Guiney (1971) have shown Tuck's solution to be valid for rather large values of his small parameter (equivalent to $\varepsilon=.4)$.

The theoretical problem is solved in Chapters II, III and IV. Chapter V discusses the forces resulting from the computed flow, and compares the results with measured forces by other investigators. Chapter VI discusses the experimental setup and the analytical procedures used to reduce the data, as well as the results of the experiments. Chapter VII presents a summary of the results and conclusions drawn therefrom, including comments concerning the three-dimensional problem and the oil/water interface problem. The Appendices contain an extended discussion of the matching process of Tuck, as well as the solution for the case of an oscillating structure which is used as a check on the computer program. Finally, a listing of the computer programs and a complete compilation of the test results are included.

II. STATEMENT OF THE PROBLEM

Figure 11.1

Consider an infinitely long semi-circular cylinder situated as shown in FigureII.l. The cylinder is fixed and rigidly held so that its edges are a distance d off the sea bottom. "Small" gravity waves pass the cylinder with crests parallel to its axis, and the cylinder in turn reflects some of the wave energy and experiences a force.

Define the velocity potential function, $\Phi(x, y, t)$, such that

$$
\vec{u}(x, y, t)=\nabla \vec{\Phi}(x, y, t)
$$

where $\vec{u}(x, y, t)$ is the velocity vector of the fluid at the point (x, y).

Throughout this discussion we will assume the motion to
be simple harmonic so that the time dependence may be separated:

$$
\begin{equation*}
\Phi(x, y, t)=\operatorname{Re}\left[\phi(x, y) e^{-i \omega t}\right] \tag{II. 2}
\end{equation*}
$$

All dependent variables will henceforth be written as spacial functions only, with the time dependence implied by II. 2 assumed.

Non-dimensionalize independent variables as follows:

$$
\begin{align*}
(x, y) & =R(\hat{x}, \hat{y}) \tag{II. 3.1}\\
t & =\hat{t} / w \tag{II. 3.2}
\end{align*}
$$

Eorce

$$
F(x, y)=\frac{\pi \rho g a R}{2} \hat{F}(x, y)
$$

II. 4.5
where $K \tanh K D=\omega^{2} / g$

$$
a=\text { wave amplitude }
$$

Henceforth all variables will be assumed dimensionless unless stated otherwise, and the caps over the variables will be omitted. It will be convenient to define

$$
\begin{array}{ll}
\varepsilon=d / R & \text { II. } 5.1 \\
\delta=K a & \text { II. } 5.2
\end{array}
$$

It will be necessary to examine the flow in the regions exterior and interior to the cylinder separately. For this purpose, define as the "outside region" that for which

$$
\begin{gathered}
x^{2}+(y-\varepsilon)^{2}>1 \\
0<y<D,
\end{gathered}
$$

and tne "inside region" that for which

$$
\begin{gathered}
x^{2}+(y-\varepsilon)^{2}<1 \\
y>0 \\
|x|<1
\end{gathered}
$$

The flow in the outside region will be identified by the velocity potential $\bar{\phi}(x, y)$. If this is taken to be a two
 . 145
(teri, Newiment, -981

$$
+\alpha_{2}(\varepsilon) \phi_{i 2}(x, y)+\ldots \quad I I . \sigma
$$

3 gage functions as yet undetermined.
[I. 6 to obtain
The $\alpha_{1}(\varepsilon)$'s
$\delta \phi_{10}(x, y)+\delta \alpha_{1} \phi_{11}(x, y)+\ldots$ We may expan

$$
\bar{\phi}(x, y)
$$

$+\delta^{2} \phi_{20}(x, y)+\ldots$
$1 g$ we will neglect terms of $0\left(\delta^{2}\right)$ and $)\left(\delta \alpha_{1}\right)$. This theory is thus valid only

In the follo calculate terms o
: E tnose terms included are much greater than those neglected, i.e.rif

$$
\delta \alpha_{1} \gg \delta^{2}
$$

In the following discussion we have incorporated the δ implicitly in our non-dimensionalization. Also, it will be convenient to write $\bar{\phi}$ as tise "incident" plus the "scattered" wave

$$
\bar{\phi}(x, y)=\phi_{0}(x, y)+\phi_{s}(x, y,)
$$

where

$$
\begin{equation*}
\phi_{0}(x, y)=i e^{i K x} \frac{\cosh K y}{\cosh K D} \tag{II. 7}
\end{equation*}
$$

, ve will find that this representation is non-uniformly vaiid. Near the gaps it will be necessary to find another solution. We will solve for the flow in each of these regjons and match them in an overlap domain in order to find the complete solution inside and outside of the cylinder.
... TT.._1 2utside Region
Denote the velocity potential for flow in the outside region by $\bar{\phi}(x, y)$. This function satisfies the following boundary value problem:

$$
\begin{array}{rlrl}
\nabla^{2} \bar{\phi} & =0 & \text { II. } 8 \\
\bar{\Phi}_{Y}(x, D)-\frac{\omega^{2} R}{g} \bar{\phi}(x, D) & =0 & & \text { II. } 9 \\
\bar{\phi}_{Y}(x, 0) & =0 & & \text { II.10 } \\
\bar{\phi}\left(x_{S}, Y_{S}\right) \cdot \hat{n}\left(x_{S}, Y_{S}\right) & =0 & Y_{S}>\varepsilon & \text { II.II }
\end{array}
$$

$$
\begin{array}{ll}
\text { where } & x_{s}^{2}+\left(y_{s}-\varepsilon\right)^{2}=1 \\
& \left.\hat{n}=x_{s} \hat{i}+y_{s}-\varepsilon\right) \hat{i}
\end{array}
$$

Define $\left(x_{S}^{0}, y_{s}^{0}\right)$ such that

$$
\left(x_{s}^{0}\right)^{2}+\left(y_{s}^{0}\right)^{2}=1
$$

defines cylinder when $\varepsilon=0$. Then note that

$$
\begin{aligned}
& x_{s}^{0}=x_{s} \\
& y_{s}^{0}=y_{s}-\varepsilon, \quad \text { and that }
\end{aligned}
$$

$$
\nabla \bar{\phi}\left(x_{s}, y_{s}\right) \cdot \hat{n}\left(x_{s}, y_{s}\right)=
$$

$$
\nabla \bar{\phi}\left(x_{S}^{0}, y_{S}^{0}\right) \cdot f\left(x_{S}^{0}, y_{S}^{0}\right)+\varepsilon \frac{\partial}{\partial y}\left[\nabla \bar{\phi}\left(x_{S}^{0}, y_{s}^{0}\right) \cdot \hat{n}\left(x_{s}^{0}, y_{s}^{0}\right)\right]
$$

$$
+\ldots
$$

Using only the first term, write the linear boundary condition on the surface of the cylinder as

$$
\begin{gathered}
\nabla \bar{\phi}\left(x_{s}, y_{s}\right) \cdot \hat{R}\left(x_{s}, y_{s}\right)=0 \\
y>0
\end{gathered}
$$

$$
\text { where } x_{s}^{2}+y_{s}^{2}=1
$$

Introducing the mathematical order notation (cf. Van Dyke), notice that equation II. 12 is valid to $O(\varepsilon)$. To complete the boundary value problem add the condition that the surface waves far from the object must consist of the incident wave plus outgoing waves (radiation condition). If we separate the function $\bar{\phi}(x, y)$ into the incident wave (undisturbed flow) plus a scattered wave as

$$
\begin{equation*}
\bar{\phi}=\phi_{o}+\phi_{s} \tag{II. 12}
\end{equation*}
$$

condition II. 11.1 becomes

$$
\begin{align*}
\vec{\nabla}_{\phi_{S}}\left(x_{s}, y_{S}\right) \cdot \hat{n}\left(x_{s}, y_{S}\right) & =-\vec{\nabla} \phi_{o}\left(x_{s}, y_{S}\right) \cdot \hat{n}\left(x_{s}, y_{S}\right) \tag{II. 13}\\
y_{S} & >0
\end{align*}
$$

Since the boundary condition (II.13) does not specify the normal velocity at the position $(\pm 1,0)$, the problem has not been completely posed.

The use of a matched asymptotic expansion allows us to replace this boundary condition with a flow singularity, and to solve the outer solution to $0\left(\alpha_{1}\right)$.

The indeterminency of the boundary conditions at $(\pm 1,0)$ suggests the division of $\bar{\phi}(x, y)$ into two parts, one satisfying nomogeneous boundary conditions and one behaving singularly at. $(\pm 1,0)$. In particular, assume

$$
\begin{aligned}
& \phi_{S}(x, y)=\phi_{S O}(x, y)+A\left[\ln \left(r_{L} / r_{R}\right)+H(x, y)\right] \\
& \text { where } r_{L}=\sqrt{(x+1)^{2}+y^{2}}, \quad r_{R}=\sqrt{(x-1)^{2}+y^{2}}
\end{aligned}
$$

$$
\text { II. } 14
$$

whici represents a regular scattered wave potential plus a source at one gap and a sink of equal strength at the other gap. The function $H(x, y)$ is necessary to satisfy II.ll.l, and is regular throughout the outside region. The source strength, A, is naturally a function of the incident wave parameters and ε, and must approach zero as ε decreases;

$$
\operatorname{Lim}_{\varepsilon \rightarrow 0} A=0
$$

The selection of a source/sink combination (II.14) to describe the perturbation caused by the gaps satisfies the physical condition that fluid must leave the outside region at one gap and enter it from the other. The selection of higher singularities may be ruled out, at least to $0(\varepsilon)$, on the basis of the "Principle of Minimum Singularity" (Van Dyke, 1964) or, more formally, through the matching of the expansion for $\phi_{S}(x, y)$ with another expansion describing the flow through the gaps.

This matching procedure is necessitated by the fact that II. 14 cannot accurately represent the flow "close" to the gaps since the source term becomes arbitrarily large as r_{L} or r_{R} become small.
T. 2 The Inside Region

Tre flow inside the cylinder must satisfy the following conditions:

$$
\begin{array}{cc}
\nabla^{2} \tilde{\phi}=0 & \text { II.16.1 } \\
\frac{\partial \tilde{\phi}}{\partial y}(x, 0)=0 & \text { II.16.2 } \\
\overline{\nabla \phi}\left(x_{S}, Y_{S}\right) \cdot \hat{i}\left(x_{S}, Y_{s}\right)=0 & \text { II.16.3 } \\
x_{S}^{2}+\dot{Y}_{S}^{2}=1 & \\
Y_{S}>0 &
\end{array}
$$

where II. 16.3 is the linearized boundary condition analagous to II. 11.
II. 16 leads to a trivial result for the case of no gap. We expect from the nature of the outside solution (II.14) that $\oint(x, y)$ takes the form

$$
\begin{equation*}
\tilde{\phi}(x, y)=B+A\left[\ell n r_{R} / r_{L}+J(x, y)\right] \tag{II 17}
\end{equation*}
$$

$$
\text { where } \begin{aligned}
B= & \text { a constant dependent on } \varepsilon \\
& \text { and the outside flow. }
\end{aligned}
$$

$J(x, y)$ is a regular function necessary to satisfy II. 16 . Equation II. 17 also satisfies the condition of continuity of flow through the gaps if A is taken to be the same as that in II.14. In order to find A and B the flow through the gaps must be examined in detail.
II. 3 Flow Adjacent to Gaps

In order to examine the flow through the gaps it becomes necessary to alter the coordinate system heretofore used in such a manner as to magnify the area under consideration, namely, the regions adjacent to the gaps. This may be accomplished by defining new independent variables.

$$
\begin{align*}
& Y_{R}=Y_{L}=y / \varepsilon \tag{II. 18.1}\\
& X_{R}=(x-1) / \varepsilon \\
& X_{L}=(x+1) / \varepsilon
\end{align*}
$$

II. 18.2
II. 18. 3

It should be noted that the selection of this particular stretching of coordinates cannot be known a priori to be correct. In particular, the condition required for proper stretching is that a point corresponding to fixed values of (X_{L}, Y_{L}) or (X_{R}, Y_{R}) will remain in the "inner" flow region in the limit as $\varepsilon \rightarrow 0$ (Lagerstrom and Cole, 1955).

Figure II. 2

For example, referring to Figure II. 2 we can define the "inner" region as that region where the solutions indicated by II. 14 and II. 17 become invalid. This is the case (using the laft gap-as the example) when $A \ln r_{i f}=0(1)$, or when

$$
\begin{equation*}
r_{L}=0\left(e^{1 / A}\right) \tag{II. 19}
\end{equation*}
$$

Thus, if we consider a point described by

$$
R_{L}=r_{L} e^{-1 / A}
$$

and hold R_{L} fixed while taking $\varepsilon \rightarrow 0, r_{L}$ will always be within a semi-circle wherein the outside solutions are not valid. It will be shown later that $A=0(1 / \ell n E)$, so that

$$
R_{L}=r_{L} / \varepsilon
$$

is indeed the proper stretching. It can be argued on purely
physical grounds, however, that the point ($-1, E$) must always be included in the inner region so that any stretching other than II. 18 would be inadmissible. For example, if we had said

$$
\begin{aligned}
y_{L} & =y_{L} \varepsilon^{-1 / 2} \\
\text { or } y_{L} & =y_{L} e^{1 / E}
\end{aligned}
$$

the point $y_{L}=\varepsilon$ does not correspond to a fixed X_{L} for $\varepsilon \rightarrow 0$.
Given the change in coordinates II. 18, we can formulate the problem for the inner flow velocity potential:

$$
\begin{array}{ll}
\nabla^{2} \hat{\phi}(X, Y)=0 & \text { II. 20.1 } \\
\frac{\partial \hat{\phi}}{\partial Y}(X, 0)=0 & \text { II. } 20.2 \\
\bar{\nabla} \hat{\phi}\left(X_{S}, Y_{S}\right) \cdot \hat{R}\left(X_{S}, Y_{S}\right)=0 & \text { II. } 20.3
\end{array}
$$

Again we may linearize the boundary condition on the cylinder wall. Equation II. 20.3 may be written

$$
\nabla \hat{\phi}\left(X_{s}, Y_{s}\right) \cdot \bar{\nabla} f\left(X_{s}, Y_{s}\right)=0
$$

where

$$
f\left(X_{S}, Y_{s}\right)=\left(\varepsilon X_{s}-1\right)^{2}+\left(\varepsilon Y_{S}-\varepsilon\right)^{2}-1 . \operatorname{II.} 22
$$

This function applies to the left gap, an analagous function applies to the right gap. Expanding II.21,

$$
\frac{\partial \hat{\phi}}{\partial \bar{X}}\left(X_{s}, Y_{s}\right)\left(\varepsilon X_{s}-1\right)+\frac{\partial \hat{\phi}}{\partial \dot{Y}}\left(\varepsilon Y_{s}-\varepsilon\right)=0
$$

and expanding the whole expression in a Taylor series about $\overline{\mathrm{x}}_{\mathrm{s}}=0$,

$$
\begin{gathered}
\left.-\frac{\partial \hat{\phi}^{\prime}}{\partial X} 0, Y_{S}\right)+\varepsilon\left(Y_{S}-1\right) \frac{\partial \hat{\phi}_{S}}{\partial Y}\left(0, Y_{S}\right) \\
+X_{S}\left[\varepsilon \frac{\partial}{\partial X}\left(0, Y_{S}-\frac{\partial^{2} \hat{\phi}^{2}}{\partial X^{2}}\left(0, Y_{s}\right)+\varepsilon\left(Y_{s}-1\right) \frac{\partial^{2} \hat{\phi}_{S}}{\partial X \partial Y}\right]+\ldots=0\right.
\end{gathered}
$$

Noting the $f\left(x_{s}, Y_{s}\right)=0$, from II. 22 we see that

$$
X_{S}=\varepsilon \frac{\left(Y_{S}-1\right)^{2}}{2}+o\left(\varepsilon^{2}\right)
$$

and may thus conclude that II. 20.3 may be written

$$
\frac{\partial \hat{\phi}}{\partial X}\left(0, y_{s}\right)=0
$$

II.20.3.1
which is valid to $0(\varepsilon)$. Thus to the same order linearization as the outer problem, the inner flow may be characterized as the flow through a slit in a vertical wall (e.g., Tuck, 1969). We may now proceed to solve the "innex" problem and the "outer" problems in each region.
III. SOLUTION

Although the statement of the problem to $O(\varepsilon)$ as discussed in Chapter II is straightforward, the exact solution is difficult, if not impossible to obtain. Various approximate methods exist, however (viz., Milgram and Halkyard, 1971), of which a direct approach will be used in conjunction with a modeling scheme to account for the gaps. The accuracy of the results will thus depend on the accuracy of the numerical scheme employed.
III. 1 Solution for the Outside Region

We may first consider the function $\bar{\phi}(x, y)$ which satisfies II. 8 -II. 11 , the function $\phi_{S}(x, y)$ defined by II. 12 satisfying II. 8-II. 10 and II.13, and the function $\phi_{\text {so }}(x, y)$ defined by II.14. If we take the limit of II.l4 as $\varepsilon \rightarrow 0$, recognizing II.l5, we obtain

$$
\phi_{S O}(x, y)=\lim _{\varepsilon \rightarrow 0} \phi_{S}(x, y)
$$

(not uniformly valid)
Thus $\phi_{S_{0}}(x, y)$ satisfies II.8-II. 10 , and II.13. In particular, write II. 13 in the limiting case $\varepsilon \rightarrow 0$ to obtain

$$
\begin{gathered}
\bar{\nabla}_{S O}\left(x_{S}, y_{S}\right) \cdot \hat{n}\left(x_{S}, Y_{S}\right)=-\bar{\nabla}_{0}\left(x_{S}, Y_{S}\right) \cdot \hat{h}\left(x_{S}, y_{S}\right) \quad \text { III. } 2 \\
Y_{S} \geq 0 \\
\phi_{S O}(x, y) \text { is simply the scattered potential outside the }
\end{gathered}
$$ cylinder for the case of no gap, and may be solved by the

direct application of Green's theorem to the region external to the cylinder (cf. Morse and Feshbach, Chapter 7). This method is equivalent to the distribution of sources and dipoles over the surface of the cylinder, and can be shown to be equivalent to a solution consisting of sources only or dipoles only distributed over the surface (cf. Lamb, 1945, p. 59).

Define the Green's function $G(x, y \mid \xi, n)$ to be the potential at (x, y) of a pulsating source at (ξ, n) in the fluid bounded by the free surface and the flat bottom extending in both directions to infinity. This potential may be characterized by the following boundary value problem:

$$
\begin{align*}
& \nabla_{x Y}^{2} G=-2 \pi \delta(x-\xi, Y-\eta) \tag{III. 3}\\
& \frac{\partial G}{\partial y}(x, 0 \mid \xi, \eta)=0 \tag{III. 4}\\
& \frac{\partial G}{\partial y}-\frac{\omega^{2} R}{G} G(x, D \mid \xi, \eta)=0 \tag{III. 5}
\end{align*}
$$

In addition, $G(x, y \mid \xi, \eta)$ must represent an outgoing wave at distances far upstream and far downstream from the source point (ξ, η). $G(x, y \mid \xi, \eta)$ may be presented by its real and imaginary parts:

$$
G(x, y \mid \xi, \eta)=g_{1}(x, y \mid \xi, \eta)+i g_{2}(x, y \mid \xi, \eta) \quad \text { III. } 6
$$

where g_{1} and g_{2} are real functions (see Appendix B).
Applying Green's theorem to the region external to the cylinder (but in the fluid) yields the following integral
representation for $\phi_{s o}(x, y)$:

$$
\begin{gathered}
\phi_{S O}(\bar{\rho})=-\frac{1}{2 \pi} \int_{\mathrm{C}}\left[\phi_{S O}(\bar{r}) \frac{\partial G}{\partial n}(\bar{\rho} \mid \bar{r})-G(\bar{\rho} \mid \bar{r}) \frac{\partial \phi_{S O}(\bar{r})}{\partial n}\right] d \ell-\quad \text { III. } \bar{r} \\
\text { where } \begin{aligned}
F & =(x, y) \\
\bar{\rho} & =(\xi, \eta)
\end{aligned}
\end{gathered}
$$

The integration-is performed over the cylinder surface assuming a unit axial dimension. Introducing III.2, and letting $\bar{\rho}$ approach the surface of the cylinder, we obtain:

$$
\phi_{S O}(\bar{\rho})=-\frac{1}{\pi} \int_{C} \phi_{S O}(\bar{r}) \frac{\partial G}{\partial n}(\bar{\rho} \mid \bar{r}) d \ell-\frac{1}{\pi} \int_{C} G(\bar{\rho} \mid \bar{r}) \frac{\partial \phi_{O}(r)}{\partial n} d \ell_{\bar{r}}
$$

The second term of III. 8 is known since both $G(\bar{\rho} \mid \bar{r})$ and $\partial \phi_{0}(r) / \partial n$ are known. The equation may be solved numerically by dividing the cylinder into a finite number (N) of elements, such that the point \bar{r}_{i} represents the midpoint of each element.

$$
\begin{align*}
\bar{r}_{i} & =\left(\cos \theta_{i}, \sin \theta_{i}\right) \\
\theta_{i} & =(i-1 / 2) \pi / N \tag{III. 9}\\
i & =1,2, \ldots, N-1, N
\end{align*}
$$

III. 8 may then be written in finite element form

$$
\begin{equation*}
\phi_{\mathbf{S O}_{j}}=\sum_{i=1}^{N} K_{i j} \phi_{S O_{i}}+F_{S O_{j}} \tag{III. 10}
\end{equation*}
$$

where $K_{i j}=\frac{\pi}{N} \nabla G\left(r_{j} r_{i}\right) \cdot \hat{n}_{i} \quad(i \neq j)$

$$
F_{S O_{j}}=-\frac{1}{N} \sum_{i=1}^{N} G\left(r_{j} \mid r_{i}\right) \bar{\nabla} \phi_{o}\left(r_{i}\right) \cdot \hat{n}_{i}
$$

The value of $K_{i i}$ is found by separating $\bar{\nabla} G\left(r_{j} / r_{i}\right)$ into a regular part plus a singular part, integrating the singular part analytically over the $i^{\text {th }}$ element, and adding the value of the regular part at the point r_{i}.

Rewriting III. 10 yields

$$
\begin{equation*}
\sum_{i=1}^{N} \phi_{S O_{i}}\left(\delta_{i j}-K_{i j}\right)=F_{S O_{j}} \tag{III. 11}
\end{equation*}
$$

which may readily be solved by matrix inversion or least squares techniques. A value of $\mathrm{N}=35$ provides a numerical accuracy of better than 1% for all frequencies of interest. Computation time for these cases averages less than one minute.

It will be convenient to define the following quantities:

$$
\begin{array}{ll}
\lim _{\bar{r} \rightarrow(-1,0)} & \phi_{S O}(\bar{r}) \simeq \phi_{S O_{N}} \\
\lim _{\overline{\mathrm{r}} \rightarrow(1,0)} & \phi_{S_{O}}(\bar{r}) \simeq \phi_{S O_{1}}
\end{array}
$$

It remains to determine the function $H(x, y)$ which, as was pointed out earlier, represents a regular function
necessary to insure that the second term of II. 14 satisfies the boundary conditions. The function $\ln \left(r_{L} / r_{R}\right)+H(x, y)$ may actually be considered the sum of two Green's functions, that for a source at ($-1,0$) and for a sink at (1,0) satisfying the following boundary value problem

$$
\begin{aligned}
& \nabla^{2}\left[\ln \left(r_{L} / r_{R}\right)+H(x, y)\right]=-2 \pi[\delta(x+1, Y)-\delta(x-1, y)] \text { III.11.1 } \\
& \frac{\partial}{\partial y}\left[\ln \left(r_{L} / r_{R}\right)+H(x, D)\right]-\frac{\omega^{2} R}{g}\left[\ln \left(r_{L} / r_{R}\right)+H(x, D)\right]=0
\end{aligned}
$$

$$
\frac{\partial}{\partial y}\left[\ln \left|\frac{x+1}{x-1}\right|+H(x, 0)\right]=0 \quad|x| \geq 1 \quad \text { III.11.3 }
$$

$$
\frac{\partial}{\partial n}\left[\ln \left(r_{L} / r_{R}\right)+H\left(x_{S}, Y_{S}\right)\right]=0 \quad|x|<0 \quad \text { III.1I.4 }
$$

Recalling the definition of the Green's function, $G(x, y \mid \xi, \eta)$, we may write

$$
\ln \left(r_{I} / x_{R}\right)+H(x, Y)=G(x, y \mid-1,0)-G(x, y \mid 1,0)+F(x, y)
$$

III. 12

Noting the conditions satisfied by $G(x, y \mid \xi, \eta)$ in III.3.5, we may then find the conditions satisfied by $F(x, y)$ by substituting III. 12 into III.II:

$$
\begin{array}{cc}
\nabla^{2} F(x, y)=0 & \text { III.13.1 } \\
\frac{\partial F(x, D)}{\partial Y}-\frac{\omega^{2} R}{g} F(x, D)=0 & \text { III.13.2 } \\
\frac{\partial F(x, 0)}{\partial y}=0 & |x| \geq 1 \\
\frac{\partial}{\partial n} F\left(x_{S}, Y_{S}\right)=\frac{\partial}{\partial n}\left[G\left(x_{S}, Y_{S} \mid 1,0\right)-G\left(x_{S}, Y_{S} \mid-1,0\right)\right] \tag{III. 13.4}
\end{array}
$$

$F(x, y)$ must also satisfy the radiation conditions. Applying Green's theorem to the region external to the cylinder, and allowing the source point to approach the cylinder's boundary in the same manner as III.8, yields the integral equation for $F(x, y)$:

$$
\begin{aligned}
F(\vec{\rho})= & -\frac{1}{\pi} \int F(\vec{r}) \frac{\partial G}{\partial n}(\vec{\rho} \mid \vec{r}) d \ell_{r} \\
& +\frac{1}{\pi} \int G(\vec{\rho} \mid \vec{r}) \frac{\partial}{\partial n}\left[G\left(\vec{r} \mid \vec{r}_{r}\right)-G\left(\vec{r} \mid \vec{r}_{\ell}\right)\right] d \ell_{r}
\end{aligned}
$$

where $\quad \vec{r}_{r}=(1,0)$

$$
\vec{r}_{\ell}=(-1,0)
$$

Since $G(\vec{p} \mid \vec{r})$ is a known function, equation III. 14 may be solved in the same manner as III.8.

For the purposes of matching, it is convenient to calculate $H(-1,0)$ and $H(1,0)$. From III.12, we see that $H(x, y)=G(x, y) \mid-1,0)-G(x, y \mid 1,0)+F(x, y)-\ln \left(r_{L} / r_{R}\right)$ III. 15

Writing

$$
G(x, y \mid \xi, \eta)=\ell n r+g(x, y \mid \xi, \eta)
$$

we obtain

$$
H(x, y)=g(x, y|-1,0\rangle-g(x, y) \mid 1,0)+F(x, y) \quad \text { III. } 16
$$

which may be calculated directly once $F(x, y)$ has been computed. For convenience, we will denote

$$
\begin{array}{ll}
H_{R}=H(1,0) & \text { III.17.1 } \\
H_{L}=H(-1,0) & \text { III.17.2 }
\end{array}
$$

III. 2 Solution for the Inside Region

The flow inside the cylinder takes the form indicated by equation II.17:

$$
\begin{equation*}
\tilde{\phi}(x, y)=B(\varepsilon)+A(\varepsilon)\left[\ln \left(r_{R} / r_{L}\right)+J(x, y)\right] \tag{II. 17}
\end{equation*}
$$

The function $J(x, y)$, like $H(x, y)$ in the outside region, is required in order to satisfy the boundary condition on the surface of the cylinder:

$$
\begin{gathered}
\vec{\nabla} J\left(x_{s}, y_{S}\right) \cdot \hat{n}\left(x_{s}, Y_{S}\right)=\hat{\nabla} \ell n\left(r_{L} / r_{R}\right) \cdot \hat{n}\left(x_{s}, y_{S}\right) . \\
x_{S}^{2}+y_{S}^{2}=1
\end{gathered}
$$

Figure III. 1
RELATIONSHIP OF r_{L} AND r_{R} ON INSIDE BOUNDARY

This can be evaluated by observing that

$$
\begin{array}{rlrl}
\hat{n}\left(x_{S}, y_{S}\right) & =\cos \theta \hat{i}+\sin \theta \hat{j} & y_{S}>0 \\
& =-\hat{j} & & y_{S}=0
\end{array}
$$

where the normal direction is taken outward from the region.
Also, writing again

$$
\begin{aligned}
& r_{L}=\sqrt{(x+1)^{2}+y^{2}} \\
& r_{R}=\sqrt{(x-1)^{2}+y^{2}}
\end{aligned}
$$

we get

$$
\begin{aligned}
\vec{\nabla} \ell n\left(r_{L} / r_{R}\right) & =\left[\hat{i} \frac{\partial}{\partial x}+\hat{j} \frac{\partial}{\partial y}\right] \ln \left(r_{L} / r_{R}\right) \\
& =\left[\frac{1}{r_{L}} \frac{\partial r_{L}}{\partial x}-\frac{1}{r_{R}} \frac{r_{R}}{\partial x}\right] \hat{i} \\
& +\left[\frac{1}{r_{L}} \frac{\partial r_{L}}{\partial Y}-\frac{1}{r_{R}} \frac{\partial r_{R}}{\partial y}\right] \hat{j} \\
& =\left[\frac{x_{S}+1}{r_{L}{ }^{2}}-\frac{x_{S}-1}{r_{R}{ }^{2}}\right] \hat{i}+y\left[\frac{1}{r_{L}^{2}}-\frac{1}{r_{R}^{2}}\right] \hat{j}
\end{aligned}
$$

Now rewrite the boundary condition, III.18,

$$
\begin{gathered}
\vec{\nabla} J\left(x_{s}, y_{s}\right) \cdot \hat{n}\left(x_{s}, y_{s}\right)=\cos \theta\left[\frac{x_{s}+1}{r_{L}{ }^{2}}-\frac{x_{s}-1}{r_{R}{ }^{2}}\right]+y_{s} \sin \theta\left[\frac{1}{r_{L}^{2}}-\frac{1}{r_{R}^{2}}\right] . \\
y_{s}>0
\end{gathered}
$$

Letting $X_{S}=\cos \theta$ and $y_{s}=\sin \theta$, and applying the law of cosines:

$$
\begin{aligned}
& \mathbf{r}_{\mathrm{R}}^{2}=2(1-\cos \theta) \\
& \mathbf{r}_{\mathrm{L}}^{2}=2(1+\cos \theta)
\end{aligned}
$$

we can write

$$
\begin{gathered}
\vec{\nabla} J\left(x_{S}, y_{S}\right) \cdot \hat{n}\left(x_{S} \cdot y_{S}\right)=\cos \theta\left[\frac{\cos \theta+1}{2(\cos \theta+1)}+\frac{\cos \theta-1}{2(\cos \theta-1)}\right] \\
+\frac{\sin ^{2} \theta}{2}\left[\frac{\cos \theta+1+\cos \theta-1}{\cos ^{2} \theta-1}\right] \\
=\cos \theta-\cos \theta \equiv 0
\end{gathered}
$$

$$
y_{s}>0
$$

Hence we arrive at the conclusion that $J(x, y)$ satisfies the homogeneous Neumann boundary condition on the surface $x_{s}^{2}+y_{s}^{2}=1$. This could have been deduced immediately by simply noting that the circular shape of the cylinder corresponds to a streamline for the source/sink combination represented by $\ell n\left(r_{L} / r_{R}\right)$ (Lamb, 1945, p. 70). Since the x-axis $\left(y_{s}=0\right)$ also represents one of the streamlines for this motion, we arrive at the fortuitous conclusion that $J(x, y)$ satisfies the homogeneous boundary condition over the entire inside region. $J(x, y)$ is at most, therefore, a constant, which can be set equal to zero with no loss of generality.

For the present it will be instructional to include $J(x, y)$ in the analysis, even though its value is zero for the circular cylinder. For other shapes its value will obviously be non-zero (except for other shapes which correspond to source/sink flow lines), and some numerical scheme (such as the integral equation method) would have to be employed to find its value. Assuming that this can be done, we will denote:

$$
\begin{array}{ll}
J_{I}=J(-1,0) & \text { III. 20.1 } \\
J_{3}=J(1,0) . & \text { III.20.2 }
\end{array}
$$

These quantities will be necessary in the matching procedure.

III. 3 Solution for the Inner Flow

The flow through the gaps was shown in Chapter II to be equivalent to $O(\varepsilon)$ to the flow through a slit in a vertical barrier. This result follows from the coordinate stretching II. 18 , and is represented in Figure III. 2.

By the method of images, this flow can be found by replacing the rigid boundary $Y=0$ by the image of the vertical barrier $\mathrm{x}=0, \mathrm{Y} \geq 1$, (Figure III.3).

Since the curvature of the cylinder does not enter this problem, the flow through either gap is identical.

To evaluate this flow, map the region shown in Figure III. 3 into that shown in Figure III. 4 by using the following mapping function:

$$
\begin{array}{r}
Z=-i \cosh \zeta \\
\text { where } Z=X+i Y \\
\zeta=\xi+\eta
\end{array}
$$

$$
\text { III. } 21
$$

The numbered points in Figure III. 3 map into the corresponđing points of Figure III. 4.

Figure 111.4
:ote that for ζ along the real axis in the ζ-plane, or the line $\eta=\pi, Z(\zeta)$ lies along the imaginary axis in the z plane. Tine points $\zeta=0$ and $\zeta=i \pi$ correspond to the edges, $Z=-i$ and $Z=i$, respectively. If we introduce the complex velocity potential, $W(Z)$, such that

$$
\begin{aligned}
\frac{d W(Z)}{d Z} & =u+i v \\
& =\frac{\partial \phi}{\partial X}+i \frac{\partial \phi}{\partial Y} \\
& =\frac{d W[Z(\zeta)]}{d \zeta} \frac{d \zeta}{d Z}
\end{aligned}
$$

We obtain tine expected result that the velocities become infinite at the edges, since

$$
\frac{d \zeta}{d Z}=\frac{i}{\sinh \zeta}
$$

becomes infinite at these points (assuming $d W / d \zeta$ takes on non-zero values there).

The η axis in the ζ-plane between $\eta=0$ and $\eta=\pi$ corresponds to the gap $(-1<I m z<+1)$ in the z plane. Passing through this line in either plane must correspond to passing from one side of the gap to the other. In order to show this, write

$$
\zeta=\alpha+i \beta
$$

so that, from III.2I,

$$
z=\sinh \alpha \sin \beta-\cosh \alpha \cos \beta
$$

Now with $0<\beta<\pi$, the region $\alpha<0$ corresponds to the left side of the gap ($\operatorname{Re} Z<0$), the region $\alpha>0$ corresponds to the right side ($\operatorname{Re} Z>0$). Figures III. 3 and III. 4 indicate these mapping regions.

The flow in the ζ-plane corresponding to flow through the gap in the Z plane thus becomes simple streaming flow:

$$
W(\zeta)=U \zeta+C,
$$

which, upon substitution of ζ from III. 21 becomes

$$
\begin{equation*}
W(Z)=U \cosh ^{-1} i z+c \tag{III. 22}
\end{equation*}
$$

This form is also given by Lamb (op. cit., p. 73). U and C must be found from matching. In order to compare III. 22 with the outer expansions, both inside and outside the cylinder, write the potential as

$$
\begin{equation*}
\hat{\phi}(X, Y)=U \operatorname{Re}\left[\cosh ^{-1} i Z\right]+c \tag{III. 23}
\end{equation*}
$$

where U and C may be complex (reflecting tize ohase of the flow) and functions of E.
III. 4 Accuracy of the Solutions
sents =ıe -
shown that it represents as
, of the cylinder to $O(\varepsilon)$.
.pter and the preceding chapter
entials in each of the areas

- outside the cylinder and
an approximate error of
ts, therefore, will be
!rived herein do not take into
te finite thickness of the
come important for small ε.
in detail in a later chapter.
in an infinite barrier, we ha well the flow through either Thus we have derived in this expressions for the velocity of interest (inside the cylin adjacent to each gap) to with $0(\varepsilon)$. The accuracy of the $r \in$ limited by the size of the ga

In addition, the results account real fluid effects or cyIincier wall - botin of whick. These effects will be discuss

The method of matched asymptotic expansions is treated by Van Dyke (1964), Cole (1968), and in considerable detail by Lagerstron and Cole (1955). The particular problem of concern here, that of flow through a small aperture, has been treated by Tuck (1971) in finding the reflection and transmission coefficients for a vertical barrier with a submerged slit. The method used by Tuck is virtually the same as that used here, and it is instructional to consider his problem in some detail. Appendix A includes, therefore, a discussion of Tuck's problem using the alternate matching schemes. Newman (1967) used an identical matching technique to compute the flow past a ship of large draft in shallow water. Widnall and Barrows (1969) used a more complicated, but straightforward, matched asymptotic expansion scheme to find the lift on two and three-dimensional wings in ground effect.

Before turning to the explicit solution of the problem at nand, it may be helpful to review the rationale behind employing the method of matched asymptotic expansions and the basic techniques of its implementation.

First, we have assumed that the correct solution for the flow has been altered only slightly by the occurrence of a small gap at the cylinder edges. Solving this problem involved the postulation of a perturbation potential, $\phi_{S}(x, y)$ whicn would approximate the correct correction for the gap
for finite values of ε, and would approach the exact correction asymptotically for small ε.

In particular, if $\phi_{p}(x, y)$ represents the exact solution for our problem (which we cannot calculate), we have shown that the solutions derived in Chapter III approximated ϕ_{p} with an error of $O(\varepsilon)$, or, in other words,

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0}\left[\frac{\phi_{p}(x, y)-\phi_{S}(x, y)}{\varepsilon}\right]=K \tag{IV. 1}
\end{equation*}
$$

where $\phi_{s}(x, y)$ is represented in II. 14 , and K is some constant winch numerically is of order unity.

The above limit states that the error, for sufficiently small values of E, is directly proportional to ε. This is, in fact, the precise definition of what is meant by the asymptotic representation

$$
\phi_{\mathrm{p}}(x, y)=\phi_{s}(x, y)+0(\varepsilon)
$$

(cf. Lagerstrom, 1957).
We have further postulated that the correct form for the function $\phi_{5}(x, y)$ is that of a source/sink combination plus a regular function of (x, y), as indicated by II.14. This solution satisfies all the conditions of the problem (Chapter II) except that it cioes not provide the correct representation of the flow near the edges of the cylinder, thus leading to the fact that IV.l becomes invalid in those regions. Because of this, the complete problem cannot be solved, even to o(ε),
without special consideration for what goes on in the vicinity of the gap.

This leads to the formulation of the "inner" problem to describe the flow through the gaps (Section II.3). The inner problem results from a coordinate transformation and stretching which magnifies the region of non-uniformity (the region where IV.l is not valid) so that the perturbation potential becomes a first order function. That is, while the effect of ε on the "outer" solution (II.14) is presumed small, its effect on the inner solution is, by definition, of $0(1)$.

Botin the "inner" and the "outer" problems are incomplete. The outer problem does not specify a boundary condition at the edges of the cylinder, and the inner problem does not specify the boundary conditions far from the edges. The complete solution cannot be found, therefore, without the added condition that both the solutions match within some intermediate region.

This condition implies the existence of an "overlap domain". That is, there must be a region in which both the outer and inner solutions are equally accurate representations of the exact solution. We may illustrate this with reference to the present problem. As we have seen, the "outer" solution (both inside and outside the cylinder) consists of \log terms plus regular terms:

$$
\phi_{S}(x, y)=A\left[\ln \left(r_{L} / r_{R}\right)+H(x, y)\right]+\phi_{S O}(x, y)
$$

Approaching the left gap from the left along the x axis yields

$$
\phi_{S}(x, 0)=A\left[\ln \left(\frac{|x+1|}{|x-1|}\right)+H(x, 0)\right]+\phi_{S 0}(x, 0) \quad \text { IV. } 2
$$

Near the point $x=-1$ the \log term becomes singular, but the other terms are well behaved. We can therefore axpand all terms except the \log in a Taylor series about $x=-1$:

$$
\phi_{S}(x, 0) \simeq A[\ln (x+1)-\ln (2)+H(-1,0)]+\phi_{S O}(-1,0)+\ldots
$$

$\lim x \rightarrow-1$ IV. 3
which may be written

$$
\begin{aligned}
& \phi_{s}(x, 0)=A\left[\ln (x+1)+Q_{L}\right]+P+\ldots \quad \text { IV. } 4 \\
& \lim x \rightarrow-1
\end{aligned}
$$

Q_{L} and P are the constants indicated by IV.3.
As we have mentioned, the above solution is non-uniform, since our assumption that ϕ_{S} approaches the exact scattered potential for $\varepsilon \rightarrow 0$ is not valid when $|x+1|$ becomes too small. This is the case when $x+1=0\left(e^{-1 / A}\right)$, since the term Aln $(x+1)$ then becomes $0(1)$. On the other hand, for sufficiently large values of $|x+1|$ the Taylor series (IV.3) must
 $|x+1|=0(A)$, for example, the error incurred in truncatir the Taylor series is equal to the term of interest, namely the leading term of IV. 4.

Equation IV. 4 holas, of course, no matter which patr chosen to approach the gap point, provided $(x+1)$ is replac
by r_{I}. For the present we will stick to the x-axis, however, since the purpose here is to illustrate the method. For the general case, $\lim _{\mathrm{r}_{\mathrm{L}} \rightarrow 0} \phi_{\mathrm{S}}(\mathrm{x}, \mathrm{y})$ is referred to as the "inner limit of the outer solution." Speaking in terms of IV.4, we can say tnat this expression is valid to $0(A)$, provided

$$
e^{-1 / A}<|x+1|<A .
$$

Turning our attention to the inner solution,

$$
\hat{\phi}(X, Y)=C+A \operatorname{Re} \cosh ^{-1} i z
$$

We may also examine its value along the x-axis:

$$
\begin{align*}
& \hat{\phi}(\bar{x}, 0)=C+A \text { Re } \cosh ^{-1}|x| \\
& \hat{\phi}(x, 0)=C+A \text { Re } \cosh ^{-1} i \mid x / \varepsilon \tag{IV. 5}
\end{align*}
$$

For sufficiently large values of $|X|$, IV. 5 becomes (see Appendix C):

$$
\begin{align*}
& \hat{\phi}(X, 0)=C+A \ln 2 X+O\left(\frac{1}{X^{2}}\right) \tag{IV. 6}\\
& \lim X \rightarrow \infty
\end{align*}
$$

Rewriting IV. 6 using outer variables yields:

$$
\underset{\lim }{\hat{\phi}(x, 0)}=3+A[\ln (x+1)+\ln 2-\ln \varepsilon]+0\left(\frac{\varepsilon^{2}}{|x+1|}\right) \quad \text { IV. } 7
$$

Tinis expression will be valid to $0(A)$ provided $|x+1|>\varepsilon$.

In addition to the requirement that $|x+1|>\varepsilon$ for the aspmptotic form IV. 7 to be valid to $0(1 / \ln \varepsilon)$, we must also recognize that the complete inner solution, IV.5, is only valid for values of $r_{L}\left(o r r_{R}\right)$ close to the gap, i.e.,

$$
r_{L}<\gamma(\varepsilon)
$$

In this regard we observe that, in particular, the curvature of the dome is not accounted for in IV.5. We must observe, therefore, at what radius the error in the wall boundary condition becomes $O(E)$.

FIGURE IV. 1 INNER FLOW REGION
Writing the potential

$$
\begin{equation*}
\hat{\phi}(x, y)=C+A\left[\operatorname{Re} \cosh ^{-1} \text { iz }\right] \tag{IV. 9}
\end{equation*}
$$

and the condition on the surface of the cylinder that there De no velocity normal to the surface:

$$
\begin{gathered}
\vec{\nabla} \hat{\phi}\left(x_{S}, y_{S}\right) \cdot \hat{n}\left(x_{S}, y_{S}\right)=0 \\
\text { where } x_{S}^{2}+\left(y_{S}-\varepsilon\right)^{2}=1 \\
\hat{n}\left(x_{S}, y_{S}\right)=x_{S} \hat{i}+\left(y_{S}-\varepsilon\right) \hat{j},
\end{gathered}
$$

Now, let

$$
\begin{align*}
\hat{\mathrm{f}}\left(\mathrm{y}_{s}, \varepsilon\right) & =\text { error in boundary condition } \\
& =\vec{\nabla} \hat{\phi}\left(\mathrm{x}_{\mathrm{s}}, \mathrm{y}_{\mathrm{s}}\right) \cdot \hat{n}\left(\mathrm{x}_{\mathrm{s}}, y_{s}\right) \tag{IV. 11}
\end{align*}
$$

It will be more convenient to evaluate this expression using complex variables. Thus, since we are only concerned here with velocities, represent the complex inner potential as

$$
\text { Where } \begin{array}{rlrl}
W(Z) & =\cosh ^{-1} \mathrm{i} Z & \text { IV.12.1 } \\
\frac{1}{\varepsilon} & \frac{d W(Z)}{d Z}=U+i V & & \text { IV.12.2 } \\
U & =\frac{\partial \hat{\phi}}{\partial x} & \text { IV.12.3 } \\
V & =\frac{\partial \hat{\phi}}{\partial Y} & & \\
Z & =X+i Y & &
\end{array}
$$

Now we may evaluate $f\left(y_{s}, \varepsilon\right)$ as

$$
\begin{gather*}
f\left(y_{s}, \varepsilon\right)=A \operatorname{Re}\left[\frac{\bar{z}_{s}}{\varepsilon} \frac{d V(Z)}{d z}\right] \tag{IV. 13}\\
\text { where } \bar{z}_{s}=x_{s}-i\left(y_{s}-\varepsilon\right)
\end{gather*}
$$

Now

$$
\frac{1}{\varepsilon} \frac{d W(Z)}{d Z}=\frac{1}{\varepsilon} \frac{d \cosh ^{-1}(i Z)}{d Z}=\frac{1}{\sqrt{(Z+1)^{2}+E^{2}}}
$$

where use has been made of the coordinate stretching $z=\varepsilon Z+1$.

So we may now write

$$
f\left(\ddot{y}_{S^{\prime}} \varepsilon\right)=A \operatorname{Re} \frac{\bar{z}_{S}}{\sqrt{\left(z_{S}+1\right)^{2}+\varepsilon^{2}}}
$$

Expanding for small e yields

$$
f\left(y_{S}, \varepsilon\right) \simeq A \operatorname{Re}\left\{\frac{z_{s}}{\left(z_{S}+1\right)}\left[1+\frac{\varepsilon^{2}}{z_{s}+1}+\cdots\right]\right\}
$$

If we insert the values of \bar{z}_{s} and z_{s}, and take only the real part, we obtain

$$
f\left(Y_{S}, \varepsilon\right)=A \frac{l+2 \varepsilon Y_{S}-\varepsilon^{2}-2 y_{S}^{2}-\sqrt{l-\left(Y_{S}-\varepsilon\right)^{2}}+Y_{S} \varepsilon}{2+2 \varepsilon y_{S}-\varepsilon^{2}-2 \sqrt{l-\left(Y_{S}-\varepsilon\right)^{2}}}
$$

We find from this that $\lim _{y_{S} \rightarrow \varepsilon} f\left(y_{S}, \varepsilon\right)=0$, as it indeed should since the edge of the cylinder is exactly vertical. To find how this error function behaves for $Y_{S}>E$, expand in a Taylor series about $y_{s}=\varepsilon$. This yields

$$
\begin{equation*}
f\left(Y_{S}, E\right) \simeq A \frac{\varepsilon\left(Y_{S}-\varepsilon\right)}{\left(1+\varepsilon^{2}\right)} \simeq A \varepsilon\left(Y_{S}-\varepsilon\right) \tag{IV. 15}
\end{equation*}
$$

when only the first term of the Taylor series has been retaine.

If we match solutions to $O\left(\alpha_{1}\right)$, the inner solution remains valid to $f\left(y_{s}, \varepsilon\right)=\alpha_{1}$, or, from IV.l5,

$$
\underline{v} \equiv r_{0}^{r}+N . / f-
$$

We have noted that the outer solution becomes invalid to $0(1 / \ell n \varepsilon)$ for $r_{L}\left(r_{R}\right)=\varepsilon$, since the second term of II. 14 becomes the same order as the first. The region between
$r_{L}=\varepsilon$ and $r_{L}=\varepsilon+\alpha_{1} / \varepsilon=\varepsilon+1 / \varepsilon \ln \varepsilon$ is therefore an overlap domain wherein both solutions are equally valid. Matcining, therefore, is accomplished by simply setting these two limit processes equal. It is interesting to note that the discovery of the precise regions of validity of each solution confirms here the existence of an overlap region where both solutions are equally good, thus justifying the matching to be carried out here. In general the method would work even if there weren't an overlap region, due to the existence of an "intermediate" region lying between the inner and outer regions in which another solution (found by a suitable intermediate stretching of variables) may be found. By the Kaplun extension theorem (Kaplun, 1954), both the inner and outer regions would overlap into this intermediate region, thus permitting a double matchipr aneratintetrobrcuas

It is also important to note the distinction between the trching of two solutions valid in adjacent regions, and the 'atching" of two solutions. This latter method, used, for ample, in zinite element calculations, is accomplished by lecting a woundary common to two regions, and adjusting the lutions in ach region so that the numerical value of the o solutions (or their derivatives) are equal on that undary.

Matching, on the other hand, is based not on the exisnce of a common boundary, but of a common region of
validity. The two solutions must, of course, agree numerically throughout this common region (to within a specified accuracy) but must in addition (or as a consequence) be of the same Eunctional form.

Figure IV. 2 shows possible plots of the outer and inner solutions (IV. 4 and IV. 7 respectively) for the potentials along the x-axis.

tching Schemes

nt R_{L}^{*} or R_{R}^{*} in the inner region
) or (1,0) respectively as ε
points r_{L}^{*} or r_{R}^{*} remain a fixed
IV. 1 Zouristic vs. Formal

We have seen that a moves toward the point (decreases. In addition,
distance from $(-1,0)$ or $(1,0)$ as ε decreases. We are thus led into the dilemma that the two regions of validity (the "inner" region associated witin R_{L} or R_{R}, and the "outer" region associated with r_{L} or r_{R}) may not remain overlapping in the limit as $\varepsilon \rightarrow 0$, since R_{L}^{*} and R_{R}^{*} decrease as r_{L}^{*} and r_{R}^{*} remain fixed.

This problem has been associated with thin airfoil theory (Van Dyke, 1954, Chap. IV) and with low Reynold's number flow (Kaplun, 1957).

It should be noted, in this regard, that one may view these matching problems from either a heuristic or a rigorous point of view, depending on one's purpose. The method employed by Tuck (1971) and Newman (1967) may be classified as "heuristic", or, as Tuck has stated, "semi-intuitive".

The heuristic, or semi-intuitive, method may be conceptualized as follows (with credit to Professor Tuck): The inner flow may be described as that seen by a near-sighted "midget" seated in the middle of the gap. He is unaware of either the existence of the free surface or the shape of the cylinder (its curvature), and must conclude that he is simply experiencing a steady motion through an aperture in a straight barrier with no other factors affecting the flow other than the size of the gap and his own presence (which we ignore). If the miaget views the flow far from the gap, through a telescope, say, he will see that the flow on one side is streaming
toward him like a sink, and on the other side the flow is disappearing in a sourcelike fashion. Even with a telescope the midget would not be able to detect the subtleties of the outer flow such as the free surface.

The outer flow, on the other hand, may be considered as that seen by a farsighted giant who is, perhaps, lying face down in the water. The giant is capable of determining the shape of the object (the cylinder), and can feel the effect of the free surface, but he cannot see the gaps at the edge of the cylinder. He does, however, note that fluid is leaving his field of view at one edge of the cylinder and appearing at the other, but he is unable to see the flow through the gap. If the giant puts on a set of spectacles, he is able to perceive the details of the gap flow only to the extent that he can verify that there is indeed a source at one gap and a sink of equal strength at the other.

The heuristic matching process simply states that the flow as seen by the midget with the telescope must be exactly the same as that seen by the giant with his spectacles.

This approach to matching is usually referred to as the "limit matching principle", and is usually stated as follows: The inner limit (of the outer limit) $=$ the outer limit (of the inner limit)

It was first used by Prandtl to solve the problems associated with the boundary layer effect on inviscid flow models. Its success hinges largely on the existence of an overlap
domain wherein the two limit processes described above do actually apply, although it may succeed even in cases where no overlap domain exists.

A more rigorous and satisfactory solution was preferred by Kaplun (1957). According to Kaplun's extension theorem, even when no region existed in which both the limits described above were valid, there must exist another solution limit
 of the inner and outer limits, and which may be matched to each of the two previous limits, therefore providing a link between the inner and outer solutions. This region spanning the "gap" (not the "gap" in our problem) between the inner and outer regions is known as the "intermediate region". It is obtained by introducing a coordinate stretching similar to the inner coordinate stretching, but not as strong, which would allow a variable in the intermediate region to remain between the inner region and the outer region as $\varepsilon \rightarrow 0$.

To see how this works, let us define an intermediate variable for our problem as:

$$
\begin{array}{ll}
\overline{\mathrm{R}}_{\mathrm{L}}=r_{\mathrm{L}} / \varepsilon^{1 / 2} & \text { IV.23.1 } \tag{IV. 23.1}\\
\overline{\mathrm{R}}_{\mathrm{R}}=r_{\mathrm{R}} / \varepsilon^{1 / 2} & \text { IV.23.2 }
\end{array}
$$

Now, if we select a point r_{L}^{*} (dealing with only the left gap does not alter the generality of the discussion) which is some distance from the gap ($-1,0$), the same point written in intermediate and inner coordinates becomes:
and

$$
\begin{aligned}
& \bar{R}_{L}^{*}=r_{L}^{*} / \varepsilon \varepsilon^{1 / 2} \\
& R_{L}^{*}=r_{L}^{*} / \varepsilon .
\end{aligned}
$$

And if we solve the appropriate problem in each of the regions (with the appropriate coordinates inserted into the equations of motion and the boundary conditions), we obtain three different solutions:

$$
\begin{array}{ll}
\bar{\phi}\left(r_{L}^{*}\right) & \text { outer solution } \\
\phi\left(\bar{R}_{L}^{*}\right) & \text { intermediate solution } \\
\hat{\phi}\left(R_{L}^{*}\right) & \text { inner solution. }
\end{array}
$$

If the asymptotic expression of each of these solutions is found by taking the limit as $\varepsilon \rightarrow 0$ with $r_{L}^{*}, \bar{r}_{L}^{*}$ and R_{L}^{*} fixed, respectively, we discover that the three points (in each region) do not remain a fixed distance from the gap $(-1,0)$. In particular, r_{L}^{*} remains a fixed distance from the gap, \bar{R}_{L}^{*} decreases like $\varepsilon^{\frac{1}{*}}$ and R_{L}^{*} decreases like ε. Thus the three points separate, the "inner" point approaching the gap faster than the intermediate point, and the outer point remaining fixed. It appears that, without Kaplun's theorem, the heuristic approach would be subject to considerable doubt. The success of the heuristic approach depends on the nature of the problem and on the dependent variables used in the matching. It works, for example, for the tangential velocity in a boundary layer but not for the normal velocity (Van Dyke, 1964).

IV. 2 Matching by Means of an Intermediate Solution

We will herein write the matching equations for the

or $\overline{\mathrm{R}}_{\mathrm{R}}$ remains within these regions as $\varepsilon+0$. Noting that

$$
\lim _{\varepsilon \rightarrow 0} \alpha(\varepsilon)=0
$$

we find that the solution for the flow in the inner region is also that for the flow through an aperture in a vertical barrier. This approximation is valid to $0(\alpha)$.

Thus there is no need to solve a separate problem for the intermediate regions. We simply have to write the outer solution and the inner solution (which is also the intermediate solution) in terms of the variables \bar{R}_{L} and \bar{R}_{R}, take the limit $\varepsilon \rightarrow 0$, and set equal the corresponding limits. Thus we may proceed in a straightforward manner:

Region 1
Outer Solution

$$
\phi_{O}(\vec{r})+\phi_{S O}(\vec{r})+A\left[\ell n\left(r_{L} / r_{R}\right)+H(\vec{r})\right] \quad I V .24 .1
$$

Write in intermediate variables for region 1

$$
\begin{align*}
& \phi_{O}\left(\alpha \bar{X}_{L}-1, \alpha \bar{Y}_{L}\right)+\phi_{S O}\left(\alpha \bar{X}_{L}-1, \alpha Y_{L}\right) \\
& +A\left[\ell n\left(\frac{\alpha \bar{R}_{L}}{\alpha \bar{R}_{L}+2}\right)+H\left(\alpha \bar{X}_{L}-1, \alpha \bar{Y}_{L}\right)\right] \tag{IV. 24.2}
\end{align*}
$$

Take limit $\alpha \rightarrow 0, \bar{R}_{L}$ fixed

$$
\phi_{0}(-1,0)+\phi_{S O}(-1,0)+A\left[\ln \left(\alpha \bar{R}_{L} / 2\right)+H(-1,0)\right] \quad \text { IV. } 24.3
$$

Inner Solution

$$
\begin{equation*}
C_{L}+A R e \cosh ^{-1}\left(i R_{L}\right) \tag{IV. 25.1}
\end{equation*}
$$

Write in intermediate variables for Region 1

$$
\begin{equation*}
C_{L}+A \operatorname{Re} \cosh ^{-1}\left[i \alpha \overrightarrow{\mathrm{R}}_{\mathrm{L}} / \varepsilon\right] \tag{IV. 25.2}
\end{equation*}
$$

Take limit $\alpha \rightarrow 0, \bar{R}_{L}$ fixed

$$
C_{L}+A\left[\ln 2 \alpha R_{L}-\ell n \varepsilon\right]
$$

$$
\text { IV. } 25.3
$$

Now IV. 24.3 and IV.25.3 must be equal, so we set

$$
\begin{align*}
\phi_{L}=\phi_{O}(-1,0)+ & \phi_{S O}(-1,0), H_{L}=H(-1,0) \text { and write } \\
& \phi_{L}+A\left[\ell n \bar{R}_{L}+\ell \operatorname{nn} \alpha-\ell \ln 2+H_{L}\right] \\
= & C_{L}+A\left[\ell n \bar{R}_{L}+\ell \operatorname{nn} \alpha+\ell \operatorname{n} 2-\ell n \varepsilon\right] \tag{IV. 26}
\end{align*}
$$

from which, by noting that the $\ln \bar{R}_{L}$ and $\ell n \alpha$ terms cancel, as indeed they must, we arrive at the equation

$$
\begin{equation*}
\phi_{L}=C_{L}+A\left[2 \ln 2-\ln \varepsilon-H_{L}\right] \tag{IV. 27}
\end{equation*}
$$

We get similar equations in each of the four intermediate regions.

Region 2

Outer Solution

$$
B+A\left[\ell n\left(r_{R} / r_{L}\right)+J(\vec{r})\right]
$$

$$
\text { IV. } 28.1
$$

Write in intermediate coordinates for Region 2

$$
\begin{equation*}
B+A\left[\ell n\left(\frac{\alpha \overline{\mathrm{R}}_{\mathrm{R}}+2}{\alpha \overline{\mathrm{R}}_{\mathrm{L}}}\right)+J\left(\alpha \bar{X}_{L}-1, \alpha Y_{L}\right)\right] \tag{IV. 28.2}
\end{equation*}
$$

Take limit $\alpha \rightarrow 0, \bar{R}_{L}$ fixed

$$
\begin{equation*}
B+A\left[\ln 2-\ln \alpha \bar{R}_{L}+J(-1,0)\right] \tag{IV. 28.3}
\end{equation*}
$$

Inner solution written in intermediate variables

$$
C_{L}+A \operatorname{Re}\left[\cosh ^{-1}\left(i \alpha \bar{R}_{L} / \varepsilon\right] \quad \text { IV. } 29.1\right.
$$

Take limit $\alpha \rightarrow 0, \bar{R}_{I}$ fixed

$$
\begin{equation*}
C_{L}-A\left[\ln 2-\ln \epsilon+\ln \alpha \bar{R}_{L}\right] \tag{IV. 29.2}
\end{equation*}
$$

Equating IV.28.3 and IV. 29.2 yields

$$
\begin{aligned}
& B= C_{L}+A\left[-2 \ln 2+\ln \varepsilon-J_{L}\right] \\
& \\
& \text { when }
\end{aligned}
$$

$$
\text { IV. } 30
$$

Take limit $\alpha \rightarrow 0, \bar{R}_{R}$ fixed

$$
\begin{gather*}
B+A\left[\ln \alpha \bar{R}_{R}-\ln 2+J_{R}\right] \tag{IV. 31.2}\\
\text { where } J_{R}=J(1,0)
\end{gather*}
$$

Inner solution written in intermediate variables

$$
\begin{equation*}
C_{R}+A \operatorname{Re} \cosh ^{-1}\left(i \alpha \bar{R}_{R} / \varepsilon\right) \tag{IV. 32.1}
\end{equation*}
$$

Take limit $\alpha \rightarrow 0, \bar{R}_{R}$ fixed

$$
\begin{equation*}
C_{R}+A\left[\ell n 2-\ell n \varepsilon+\ell n \alpha \bar{R}_{R}\right] \tag{IV. 32.3}
\end{equation*}
$$

Equating IV.31.2 with IV.32.2, we obtain

$$
\begin{equation*}
B=C_{R}+A\left[2 \ln 2-\ln \varepsilon-J_{R}\right] \tag{IV. 33}
\end{equation*}
$$

Region 4
Outer solution written in intermediate variables for Region 4

$$
\begin{align*}
& \phi_{o}\left(\alpha \bar{X}_{R}+1, \alpha \bar{Y}_{R}\right)+\phi_{50}\left(\alpha X_{R}+1, \alpha \bar{Y}_{R}\right) \\
+ & A\left[\ell n\left(\frac{\alpha \overline{\mathrm{~T}}_{-}+2}{\alpha \overline{S R}_{R}}\right)+H\left(\alpha \bar{X}_{R}+1, \alpha \bar{Y}_{R}\right)\right] \tag{IV. 34.1}
\end{align*}
$$

Take limit $\alpha \rightarrow 0, \bar{R}_{\mathrm{L}}$ fixed

$$
\begin{equation*}
\phi_{\mathrm{R}}+A\left[\ell n 2-\ell \ln a \bar{R}_{\mathrm{R}}+\mathrm{H}_{\mathrm{R}}\right] \tag{IV. 34.2}
\end{equation*}
$$

where $\phi_{R}=\phi_{O}(1,0)+\phi_{S O}(1,0)$

$$
\mathrm{H}_{\mathrm{R}}=\mathrm{H}(1,0)
$$

Inner solution written in intermediate variables for Region 4

$$
C_{R}+A \operatorname{Re}\left[\cosh ^{-1}\left(i a \bar{R}_{R} / \varepsilon\right)\right] \quad \text { IV.35.I }
$$

Take limit $\alpha \rightarrow 0, \bar{R}_{L}$ fixed

$$
C_{R}-A\left[\ln 2-\ell n \varepsilon+\ell n \alpha \bar{R}_{R}\right]
$$

IV. 35.2

Setting IV. 34.2 equal to IV.35.2 yields

$$
\begin{equation*}
\phi_{R}=C_{R}+A\left[-2 \ln 2+\ln \varepsilon-H_{R}\right] \tag{IV. 36}
\end{equation*}
$$

From the above we extract four matching equations to find the unknown constants:

$$
\begin{align*}
\phi_{L}=C_{L}+A\left[2 \ln 2-\ln \varepsilon-H_{L}\right] & \text { IV. } 27 \tag{IV. 27}\\
3=C_{L}+A\left[-2 \ln 2+\ln \varepsilon-J_{L}\right] & \text { IV. } 30 \tag{IV. 30}\\
3=C_{R}+A\left[2 \ln 2-\ln \varepsilon-J_{R}\right] & \text { IV. } 33 \tag{IV. 33}\\
\phi_{R}=C_{R}+A\left[-2 \ln 2+\ln \varepsilon-H_{R}\right] & \text { IV. } 36
\end{align*}
$$

Solving these equations results in the following expressions for the unknowns. The algebra is simple, and is omitted here.

$$
\begin{align*}
A & =\frac{\phi_{L}-\phi_{R}}{8 \ell n 2-4 \ln E+H_{R}-H_{L}+J_{L}-J_{R}} \tag{IV. 37}\\
B & =\frac{\phi_{L}+\phi_{R}}{2}+\frac{A}{2}\left[H_{L}-J_{L}+H_{R}-J_{R}\right] \tag{IV. 38}\\
C_{L} & =\frac{B+\phi_{L}+A\left[H_{L}+J_{L}\right]}{2} \tag{IV. 39}\\
C_{R} & =\frac{B+\phi_{R}+A\left[H_{R}+J_{R}\right]}{2} \tag{IV. 40}
\end{align*}
$$

IV. 3 Discussion of Matching Results

These equations confirm the results of the previous section, i.e., that $A=O(1 / \ell n \varepsilon)$, as indeed it must in order for the matching to work. It is interesting to note that the value of A could be written in the form of an asymptotic expansion in l/lne.

$$
\begin{equation*}
A=\sum_{n=1}^{N} A_{n} /(\ell n \varepsilon)^{n} \tag{IV. 41}
\end{equation*}
$$

where

$$
A_{n}=\left(8 \ell n 2+H_{R}-H_{L}+J_{L}-J_{R}\right)^{n-1} / 4^{n}
$$

This suggests that a step by step matching procedure could have been used to obtain the same results. Appendix A discusses the problem of a single slit in a vertical wall using both a step by step method and a "block" matching process (i.e., the heuristic method).

The constant B (eqn. IV.38) is of some interest.
Although its value has no effect on the flow, either inside or outside of the cylinder, it represents a pulsating pressure which is felt throughout the inside region. It thus takes on a primary importance in the calculation of the vertical force on the cylinder.

Furthermore, since B takes on a first order value equal to $1 / 2\left(\phi_{L}+\phi_{R}\right)$, we are confronted with an apparent paradox. In the limit $E \rightarrow 0, B$ remains a fixed $O(1)$ constant implying $0(1)$ pressure fluxuations on the inside of the cylinder for no gap. For the original zero gap problem, however, we assume that there is no pressure fluctuation on the inside of the cylinder. This would indeed be the case for the idealized model, since there would be no explanation for the communication of pressure from the outside region to the inside region. The inside of the cylinder could not "know" what the behavior of the fluid was outside, or, indeed, whether there was any Eluid on the outside whatsoever.

This behavior may be explained by considering the incident wave as the sum of two standing waves, a symmetric part and an asymmetric part. The first order pressures at the left (p_{L}) and the right (p_{R}) gaps due to the symmetric and asymmetric parts respectively may be written

$$
\begin{aligned}
& p_{L}=p_{s y m} \cos (\omega t+\alpha)+p_{\text {asym }} \sin (\omega t+\beta) \\
& p_{R}=p_{s y m} \cos (\omega t+\alpha)-p_{\text {asym }} \sin (\omega t+\beta)
\end{aligned}
$$

The symmetric part of this pressure will not drive any flow through the gap. The inside pressure in phase with the symmetric outside pressures must therefore be simply $p_{\text {sym }}$. On the other hand, the asymmetric pressures will induce motion through the cylinder but will cause no constant pressure rise in the inside region.

The calculation of forces will be discussed in more detail in Chapter V. We will turn for the moment to another look at the matching.
IV. 4 Uniqueress of Matched Solution

The present problem may be treated without resorting to the matching procedure. We could, for example, treat the cylinder as a two-dimensional body immersed in a moving fluid and calculate the scattering by an integral equation metiod (see, e.g., Wehausen and Laitone, p. 533).

By this method we would find that the cylinder could be represented by a vortex sheet coincident with the cylinder surface. Tire strength of the sneet would equal the difference in tangential velocities across the surface of the cylinder.

Unfortunately, no method exists for solving this integral equation exactly. If one did, we could in principle evaluate it for small ε by expanding about $\varepsilon=0$ (where the vortex strength becomes proportional to the outside tangential velocity). As it is, the solution must be found numerically. A numerical solution would, however, become insensitive to small changes in ε for small gaps, and would not be practical for the rance of gap widtins of interest.

The formulation of the problem in terms of a body immersed in a fluid raises some theoretical questions about tine matching scheme, however. In Chapters II and III we formulated the problem for three separate regions. Each region is simply connected, and the solutions formulated are unique.* The formulation of the problem as a body immersed in a single region represents flow in a multiply connected

[^2]region, however. Flow in a multiply connected region (such as flow past an air foil) cannot be uniquely specified by Laplace's equation and the boundary conditions. Such flow, satisfying all the boundary conditions, may contain an undetermined amount of "bound" vorticity (vorticity which does not travel with the fluid particles) which is manifested by a fixed circulation, Γ, about the body (cf. Lamb, §49).

In order to arrive at a solution in a multiply connected region the circulation Γ must be specified. The problem as put forth in Chapter II appears to be incomplete, therefore, since no value for Γ is determined, and since we have already seen that the problem is conceptually equivalent to a cylinder in a fluid region.

The resolution of this dilemma, and the justification for the matching scheme, rests on the fact that the total circulation about the cylinder has implicitly been set equal to zero by the matching itself, as can be seen from the following discussion.

The circulation, Γ, is defined as the integration of the tangential velocity around a closed loop.

$$
\begin{equation*}
\Gamma=\oint_{\mathrm{c}} \overrightarrow{\mathrm{u}} \cdot \overrightarrow{\mathrm{~d}} \overrightarrow{\mathrm{l}} \tag{IV. 42}
\end{equation*}
$$

If the motion is irrotational and the loop C is drawn so that the region inside the loop is simply connected (i.e., free of any bodies), Γ must equal zero. If, on the other inand, the loop contains a oody, the value of Γ cannot be determined from potential theory. (Its value for air foil problems is fixed by an empirical observation that the aft stagnation point moves to the trailing edge of the foil. This condition is called the Kutta condition - see L. Prandtl and O. G. Tienjtens, Figures 42-51.)

In orier to fully specify the problem set up in Chapter II we must then specify the value of Γ as defined by IV. 42 to be zero. The rationale for selecting this condition rather than involving tae Kutta condition (saying the trailing edge is a stagnation point) is discussed in Chapter VI with regards to the experimental results.

Figure IV. 3 shows the path of integration drawn about the cylinder a distance ε off the bottom.

The points 1, 2, 3, 4 are located in the "intermediate" regions. In order to perform the integration, split the loop C into four segments: C_{12}, C_{23}, C_{34} and C_{41}, where the segment referred to lies between the points designated by the subscripts. We may evaluate the integrals over each of these segnents by noting that, for the line integral between points a anci b,

$$
\int_{a}^{b} \frac{\partial \phi}{\partial \ell} d \ell=\phi(b)-\phi(a)
$$

we may therefore write

$$
\begin{aligned}
\oint \frac{\partial \phi}{\partial \ell} d \ell & =\int_{1}^{2} \frac{\partial \psi_{L}}{\partial \ell} d \ell+\int_{2}^{3} \frac{\partial \tilde{\phi}}{\partial \ell} d \ell+\int_{3}^{4} \frac{\partial \psi_{\mathrm{R}}}{\partial \ell} d \ell+\int_{4}^{1} \frac{\partial \bar{\phi}}{\partial \ell} \mathrm{~d} \ell \\
& =\psi_{L 2}-\psi_{L 1}+\tilde{\phi}_{3}-\tilde{\phi}_{2}+\psi_{R 4}-\psi_{R 3}+\bar{\phi}_{1}-\bar{\phi}_{4}
\end{aligned}
$$

where $\psi_{L 2}, \psi_{L 1}, \hat{\phi}_{3}$, etc. refer to the functions $\psi_{L}, \hat{\phi}$, etc. evaluated at the points $1,2,3$ and 4 (Figure IV.4) respectively. We may designate these points in intermediate variables: $\overline{\mathrm{R}}_{1}, \overline{\mathrm{R}}_{2}, \overline{\mathrm{R}}_{3}$ and R_{4}, and write, setting the expression for Γ equal to zero (eqn. IV.43),

$$
\begin{aligned}
0 & =C_{L}+A \operatorname{Re} \cosh ^{-1}\left(\frac{i \alpha \bar{R}_{2}}{E}\right)-C_{L}-A \operatorname{Re} \cosh ^{-1}\left(\frac{i \alpha \bar{R}_{1}}{\varepsilon}\right. \\
& +B+A \ln \left[\frac{\alpha \bar{R}_{3}}{2}\right]+J(1,0)-B-A \ln \left[\frac{2}{\alpha \bar{R}_{3}}\right]-J(-1,0) \\
& +C_{L}+A \operatorname{Re} \cosh ^{-1}\left(\frac{i \alpha \bar{R}_{4}}{\varepsilon}\right)-C_{L}-A \operatorname{cosi}^{-1}\left(\frac{i \alpha \bar{R}_{3}}{\varepsilon}\right. \\
& +\phi_{O}(-1,0)+\phi_{S O}(-1,0)+A\left[\ln \left(\frac{\alpha \bar{R}_{1}}{2}\right)+H(-1,0)\right] \\
& -\phi_{O}(1,0)-\phi_{S O}(1,0)-A\left[\ln \left(\frac{2}{\alpha \bar{R}_{4}}\right)+H(1,0)\right]
\end{aligned}
$$

Here $\overline{\mathrm{R}}_{\mathrm{i}}$ is the radius measured in terms of the intermediate variables from tie point $(-1,0)$, for $i=1$ and 2 , and $(1,0)$, for $i=3,4$, to the point i. This expression becomes asymptotically valid for small gaps, so, as in the matching, it is appropriate to evaluate it in the $\lim \alpha \rightarrow 0$ keeping
$\bar{R}_{i}, i=1-4$, fixed. Taking this limit in the same manner as before we arrive at,

$$
\begin{aligned}
0 & =A\left\{-\ln \left(\frac{2 \alpha \bar{R}_{2}}{\varepsilon}\right)-\ln \left(\frac{2 \alpha \bar{R}_{1}}{\varepsilon}\right)+\ln \left(\frac{\alpha \bar{R}_{3}}{\mathrm{R}}\right)+J_{\mathrm{R}}\right. \\
& -\ln \left(\frac{2}{\alpha \bar{R}_{2}}\right)-J_{L}-\ln \left(\frac{2 \alpha \overline{\mathrm{R}}_{4}}{\varepsilon}\right)-\ln \left(\frac{2 \alpha \overline{\mathrm{R}}_{3}}{\varepsilon}\right) \\
& \left.+\ln \left(\frac{\alpha \bar{R}_{1}}{2}\right)+\mathrm{H}_{\mathrm{L}}-\ln \left(\frac{2}{\alpha \overline{\mathrm{R}}_{4}}\right)-\mathrm{H}_{\mathrm{R}}\right\}+\phi_{\mathrm{L}}-\phi_{\mathrm{R}} \\
& =A\left\{4 \ln \varepsilon-8 \ln 2+\mathrm{H}_{2}-\mathrm{H}_{\mathrm{R}}+\mathrm{J}_{\mathrm{R}}-J_{\mathrm{L}}\right\}+\phi_{\mathrm{L}}-\phi_{\mathrm{R}}
\end{aligned}
$$

This yields the relationship

$$
\begin{equation*}
A=\frac{\phi_{\mathrm{R}}-\phi_{\mathrm{L}}}{4 \ln \varepsilon-8 \ln 2+\mathrm{H}_{L}-\frac{H_{R}}{}+J_{R}-\mathrm{J}_{\mathrm{L}}} \tag{IV. 44}
\end{equation*}
$$

which is precisely the same result as that found by matching (eqn. IV.37). If the circulation is specified Γ, the source strength becomes

$$
\begin{equation*}
A=\frac{\Gamma+\phi_{R}-\phi_{L}}{4 \ell n E-8 \ell n 2+h_{L}-H_{R}+J_{R}-J_{L}} \tag{IV. 45}
\end{equation*}
$$

Tinus the solution found by matching is indeed unique, and assumes a circulation of zero.
IV. 5 Flow Impedance

The question may be raised as to what would be the effect of altering the gap geometry or the inside flow. The assumption that the cylinder wall has zero thickness, for
example, is clearly violated in practice. The models used in the experimental tests had a wall thickness of $1 / 8 "$, the same order as the gap width.

We may define for this purpose a gap "impedance" which will indicate the relative resistance of the gap to flow. In a direct analogy to electrical circuit theory, we can define this impedance as the potential difference across the gap required to induce a unit current (flow strength). If the point p_{1} lies on one side of the gap and p_{2} on the other, the impedance, I, may be defined as

$$
\begin{equation*}
I=\frac{\phi\left(p_{2}\right)-\phi\left(p_{1}\right)}{A} \tag{IV. 46}
\end{equation*}
$$

If we consider the flow through a gap in a wall with zero thickness, for example, the impedance may easily be seen to equal

lance naturally increases with r (the distance ar of the gap). The quantity of interest, how-

We may term this the "characteristic" impedance \ddagger may write from the above expression ap $=$ characteristic impedance $=2 \ln \frac{2}{\varepsilon}$
≥ 1 exhibits a characteristic impedance. For Alculation of A in the preceding section may be an application of Kirchoff's law to the "circuit"

The im from the ce ever, is th the distance of the gap,

Any cha example, the thought of a
circumscribing the cylinder (Figure IV.3) wherein the following impedances have been used:

Section
Outside Dome $\quad-2 \ln 2+H_{L}-H_{R}$ Inside Dome $\quad-2 \ln 2+J_{R}-J_{L}$ Gaps (2) $\quad-2 \ln 2 / \varepsilon$

Total

$$
4 \ell n-8 \ell n 2+H_{L}-H_{R}+J_{R}-J_{L}
$$

The first order potential across the cylinder ($\phi_{R}-\phi_{L}$) may be thought of as a battery (a "current independent" voltage source) hooked into the loop pictured in Figure IV. 4.

simple ohm's law for this case.
somputed as
Kirchoff's law becomes The current, C, may easily 1
$\frac{\mathrm{F}_{\mathrm{o}}}{\mathrm{I}_{\text {inside }}^{C}+2 I_{\text {gap }}^{C}}$,
$C=$
$\overline{I_{\text {outsid }}^{\text {C }}}$
which is equivalent to eqn. IV.44. It should be noted that the introduction of a finite circulation is equivalent to stepping up the potential of E.

The purpose of elaborating here on the electrical analog is simply to aid in the conceptualization of the problem. It becomes easy to see now the effect of altering the geometry of the gap or the inside region.

For example, consider the problem of a cylinder of finite thickness. If the zero thickness cylinder represents the mean line of the finite thickness case, Figure IV. 5 shows the situation.

Provided the thickness of the cylinder wall is not too great, the main alteration of the previous result will appear in the characteristic impedance of the gaps.
I^{c} gap will be affected by a change in gap geometry. Whether it will increase or decrease depends on the exact nature of the inner flow, the type of singularities present at the edges, etc. Guincy (1971) has indicated that the extraordinary transmission properties of the submerged slit may be eliminated when finite thickness is taken into account. This suggests that I^{c} gap will indeed increase for realistic gaps.

The total impedance may also be increased by the presence of an obstacle in the inside region. Any obstruction to the flow will cause the streamlines to come closer together thus increasing the potential drop along a streamline needed to sustain a given flow.

Photographs of the gap flow (Appendix
: factors may be of overriding concern. zussed in Chapter VI.
finite wall thickne
F) indicate that ot These factors are \dot{c}

V. FORCES ON THE CYLINDER, REFLECTION COEFFICIENTS

Once the velocity potential both outside and inside the cylinder is known, the calculation of forces becomes straightforward. Bernoulli's equation for pressure in unsteady irrational flow may be linearized and written, noting the nondimensionalization introduced in chapter II (eqn. II. 4.4):

$$
\begin{align*}
P(x, y, t) & =-\frac{\partial \phi}{\partial t}(x, y, t) \\
& =\operatorname{Re}[i \phi(x, y)] \tag{V. 1}
\end{align*}
$$

The total force on the cylinder will equal the integration of the net pressure over the cylinder's su face times the appropriate direction cosine. This neglects viscous influences.

Figure III. 1 (page, shows the cylinder and the coordinates system used. In the notation used before, we repeat the velocity potentials for the inside and outside regions respectively:

$$
\begin{array}{cc}
\phi(\bar{r})=B+A \ln \left(r_{L} / r_{R}\right) & V .2 .1 \\
\bar{\phi}(\bar{r})=\phi_{O}(\vec{r})+\phi_{S O}(\vec{r})+A\left[\ln \left(r_{L} / r_{R}\right)+H(\vec{r})\right] \quad V .2 .2
\end{array}
$$

$J(\vec{r})$ has been set equal to zero, as it must for the semi-circular cylinder (Chapter III). A computer program has been written to compute $\phi_{O}(\vec{r}), \phi_{\text {so }}(\vec{r})$ and $H(\vec{r})$ on the surface of the cylinder.

The net pressure on the cylinder is the difference of the pressure acting inside and that acting outside the cylinder. Thus, for a point $\left(x_{s}, y_{s}\right)$ on the cylinder $\left(\vec{r}_{s}=x_{s} \hat{i}+y_{s} \hat{j}\right)$, the net pressure becomes

$$
P_{n e t}\left(x_{s}, y_{s}, t\right)=\operatorname{Re} i e^{-i \omega t}\left[\tilde{\phi}\left(x_{s}, y_{s}\right)-\bar{\phi}\left(x_{s}, y_{s}\right)\right]
$$

or, writing in complex form

$$
\begin{array}{ll}
\tilde{\phi}(\bar{r})=B+A \ln \left(r_{R} / r_{L}\right) & V .2 .1 \\
\bar{\phi}(\bar{r})=\phi_{O}(\vec{r})+\phi_{S O}(\vec{r})+A\left[\ln \left(r_{L} / r_{R}\right)+H(\vec{r})\right] & V .2 .2
\end{array}
$$

$J(\vec{r})$ has been set equal to zero, as it must for the semi-circular cylinder (Chapter III). A computer program has been written to compute $\phi_{O}(\vec{r}), \phi_{S O}(\vec{r})$ and $H(\vec{r})$ on the surface of the cylinder.

The net pressure on the cylinder is the difference of the pressure acting inside and that acting outside the cylinder. Thus, for a point $\left(x_{s}, y_{s}\right)$ on the cylinder $\left(\vec{r}_{s}=x_{s} \hat{i}+y_{s} \hat{j}\right)$, the net pressure becomes

$$
p_{n e t}\left(x_{s}, y_{s}, t\right)=\operatorname{Re}\left[i e^{-i \omega t}\left(\tilde{\phi}\left(x_{s}, y_{s}\right)-\bar{\phi}(x, y)\right)\right]
$$

or, writing in complex form

$$
\begin{equation*}
p\left(x_{s}, y_{s}\right)=i\left[\tilde{\phi}\left(x_{s}, y_{s}\right)-\bar{\phi}\left(x_{s}, y_{s}\right)\right] \tag{V. 3}
\end{equation*}
$$

The net pressure is taken positive in the direction away from the center of the cylinder. The horizontal and vertical forces on the cylinder may now be written as:

$$
\begin{gathered}
F_{H}=\frac{2 i}{\pi} \int_{0}^{\pi} \cos \theta\left\{B-\phi_{O}\left(\vec{r}_{S}\right)-\phi_{S O}\left(\vec{r}_{s}\right)+A\left[2 \ln \left(r_{R s} / r_{L S}\right)-H\left(\vec{r}_{s}\right)\right]\right\} d \theta \\
F_{V}=\frac{2 i}{\pi} \int_{0}^{\pi} \sin \theta\left\{B-\phi_{O}\left(\vec{r}_{S}\right)-\phi_{S O}\left(\vec{r}_{s}\right)+A\left[2 \ln \left(r_{R s} / r_{L s}\right)-H\left(\vec{r}_{S}\right)\right]\right\} d \theta \\
\text { V.4.2 } \\
\text { where } r_{R s}=2 \sin \theta / 2 \\
r_{L s}=2 \cos \theta / 2
\end{gathered}
$$

The integrals in V. 4 may be divided into those which ..usctseesculluatad. numerically and those. whirl can_ be evauated analytically:

Numerically

$$
\begin{aligned}
& \frac{2 i}{\pi} \int_{0}^{\pi}\left\{\begin{array}{l}
\cos \theta \\
\sin \theta
\end{array}\right\}\left[\phi_{o}\left(\vec{r}_{s}\right)+\phi_{s o}\left(\vec{r}_{s}\right)+A H\left(\vec{r}_{s}\right)\right] d \theta \\
\simeq & \frac{2 i}{N} \sum_{n=1}^{N}\left\{\begin{array}{l}
\cos \theta_{n} \\
\sin \theta_{n}
\end{array}\right\}\left\{\frac{\cosh \left(K \sin \theta_{n}\right) e^{i\left(K \cos \theta_{n}\right)}}{\cosh K_{d}}+\phi_{s O_{n}}+A H_{n}\right\}
\end{aligned}
$$

Analytically

$$
\frac{4 i A}{\pi} \int_{0}^{\pi}\left\{\begin{array}{c}
\cos \theta \\
\sin \theta
\end{array}\right\} \ln \left(\frac{r_{\mathrm{Rs}}}{r_{\mathrm{Ls}}}\right) \mathrm{d} \theta=\frac{4 i A}{\pi} \int_{0}^{\pi}\left\{\begin{array}{l}
\cos \theta \\
\sin \theta
\end{array}\right.
$$

$$
=\left\{\begin{array}{c}
4 i A \\
0
\end{array}\right\} \quad \text { v.5.3 }
$$

where

$$
\begin{aligned}
& H_{n}=N\left(\cos \theta_{n}, \sin \theta_{n}\right) \\
& \theta_{n}=\frac{\pi}{N}(n-1 / 2) \\
& \quad n=1,2, \ldots, N-1, N
\end{aligned}
$$

These expressions are evaluated in the computer program listed in Appendix F. It has been common practice among engineers calculating forces on ocean structures to use what is known as "Morison's formula" (Morison, 1951) to compute horizontal loads. By this formula, the (dimensional) horizontal force on an object is written (omitting the drag term):

$$
\begin{equation*}
F=\rho V C_{M} \frac{d U}{d \overleftarrow{t}} \tag{V. 6}
\end{equation*}
$$

where $\quad V=$ volume displaced by the object

$$
\begin{aligned}
\mathrm{C}_{\mathrm{M}}= & \text { a mass coefficient, a function } \\
& \text { of the geometry and period } \\
\mathrm{dU} / \mathrm{dt}= & \text { acceleration of fluid particle at } \\
& \text { the center of the object when no } \\
& \text { scattering takes place (i.e., when } \\
& \text { the object is not there). }
\end{aligned}
$$

If the point $(0,0)$ is taken as the center of the object,

$$
\begin{align*}
& \frac{d U}{d t}=-i \frac{g a k}{\cosh K D} \\
& V=\frac{\pi R^{2}}{2} \quad \text { (volume per unit length yielding } \\
& \text { force per unit length) } \tag{V. 7}
\end{align*}
$$

Writing in non-dinensional form (eqn. II.4.5)

$$
\begin{equation*}
\mathrm{F}_{\mathrm{H}}=\frac{\mathrm{F}}{\frac{\pi}{2} \mathrm{pgaR}}=\frac{-\mathrm{iKRC}}{\mathrm{M}} \tag{V. 8}
\end{equation*}
$$

The results of the horizontal force calculations are given in terms of C_{M},

$$
C_{M}=\frac{i F_{H} \cosh K D}{K R}
$$

$$
\text { V. } 9
$$

V. 1 A Simplified Theory

Consider the case of $K D \ll 1$. In this case, the flow is uniform with depth, and we can replace the free surface (mathematically) by a rigid wall.

If, in addition, we stipulate that $R / D \ll 1$, the problem reduces to that of streaming flow past a cylinder with a slit (Figure V.3)

FIGURE V. 3
FREE SURFACE REPLACED BY RIGID WALL

Now the incident flow is simply

$$
\phi_{0}=U r \cos \theta,
$$

where U is the maximum velocity.

As before we may write the total potential as
outside cylinder: $\quad \phi^{0}=\mathrm{Ur} \cos \theta\left(I+\mathrm{R}^{2} / \mathrm{r}^{2}\right)+\mathrm{Aln}\left(\mathrm{r}_{\mathbf{I}} / \mathrm{r}_{\mathrm{R}}\right)$
V. 10
inside cylinder: $\quad \phi^{i}=\operatorname{Aln}\left(r_{R} / r_{L}\right)+B \quad$ V.II

The exact first order flow is given by V.10. These solutions may be compared with those shown in Figure IV. 3 (page). For this case, $H(\vec{r})$ is equal to zero since no wave terms exist. $J(\vec{r})$ is again zero, and we can apply IV. 37 -nd Tir 30 +A find π and H .
where $Q(\theta)$ is found by comparing V. 14 with V.10, V. 11 and V. 12:

$$
\begin{equation*}
Q(\theta)=2 R \cos \theta-\frac{8 R \ell n\left(r_{R} / r_{L}\right)}{4 \ell n \varepsilon-8 \ell \ln 2} \tag{V. 15}
\end{equation*}
$$

For zero gap, we get

$$
\begin{equation*}
F_{H}=2 \rho \pi R^{2} \frac{d U}{d t} \tag{V. 16}
\end{equation*}
$$

Comparing this with Morison's formula, eqn. V.6, we find $C_{M}=2.0$. This is a classical result for a cylinder in unsteady motion.

The force with a finite gap will be

$$
\begin{align*}
F_{H} & =\rho R \frac{d U}{d t}\left\{2 \pi R-\frac{8 R}{4 \ell n E-8 \ell n 2} \int_{0}^{2 \pi} \ln \left(\frac{r_{R}}{r_{L}}\right) \cos \theta d \theta\right\} \\
& =\rho R \frac{d U}{\ddot{a} t}\left\{2 \pi R+\frac{16 \pi R}{4 \ell n \varepsilon-8 \ell n 2}\right\} \tag{V. 17}
\end{align*}
$$

where use has been made of the relation

$$
\ln \left(r_{R} / r_{L}\right)=\ell n(\tan \theta / 2)
$$

and the integral has been integrated by parts.

From V.l7 we can evaluate C_{M} for finite values of ε :

$$
\begin{equation*}
C_{M}=2-\frac{16}{4 \ell n E-8 \ell n 2} \tag{V. 18}
\end{equation*}
$$

Table V.1 shows values of C_{M} computea for four values of $\varepsilon . C_{M}$ * shown in the table is the value of C_{M} computed by the computer program (Appendix F) for

$$
\begin{aligned}
& \overline{\mathrm{R}}=\omega^{2} \mathrm{R} / \mathrm{g}=.001 \\
& \overline{\mathrm{D}}=\omega^{2} \mathrm{D} / \mathrm{g}=.01
\end{aligned}
$$

TABLE V. 1
C_{M} computed via eqn. V. 18
$C_{M}{ }^{*}$ computed by program

$|$| ε | \bar{C}_{M} | $\mathrm{C}_{\mathrm{M}}{ }^{*}$ |
| :--- | :---: | :---: |
| 0.0 | 2.00 | 2.0 |
| 0.001 | 1.524 | 1.52 |
| 0.01 | 1.333 | 1.33 |
| 0.10 | 0.930 | 0.93 |

In addition to checking the calculations of the computer program, these results show the remarkable change in the added mass due to the gap. For an E of only .001 , the force coefficient is reduced 25% (the added mass by 50\%!). This large drop will be discussed in more detail in the next chapter in conjunction with the experimental results.

The gaps do not affect the vertical force in this approximate theory. The source/sink potential is asymmetric, as is the first order potential. The vertical force, therefore, is zero for all values of ε, including $\varepsilon=0$. A vertical force can only result when the free surface effect is included.

V. 2 Reflection and Transmission Coefficient

Although the primary purpose of this thesis is to examine forces on a submerged object, the computation of transmission and reflection coefficients has also been
carried out. These results may have direct engineering application in the design of breakwaters.

We have calculated the flow potential resulting from an incident wave from the left with a surface profile

$$
\eta_{0}(x, t)=\cos (k x-\omega t)
$$

or, if we separate the time dependence as in Chapter II, we may denote

$$
\begin{aligned}
\eta_{0}(x, t) & =\operatorname{Re}\left[\eta_{0}(x) e^{-i \omega t}\right] \\
\eta_{0}(x) & =e^{i k x}
\end{aligned}
$$

$$
\text { II. } 6
$$

We may write the surface profile for downstream and for upstream from the cylinder as, respectively,

$$
\begin{array}{rlr}
\eta_{t}(x) & =\boldsymbol{T} e^{i k x} & V .19 .1 . \\
\eta_{r}(x) & =e^{i k x}+\boldsymbol{R} e^{-i k x} & V .19 .2 \\
\text { where } \boldsymbol{T} & =\text { transmission coefficient } \\
\boldsymbol{Q} & =\text { reflection coefficient }
\end{array}
$$

To compute \boldsymbol{T} and \boldsymbol{R}, the amplitude of the scattered wave for upstream and downstream must be computed. The surface elevation due to a potential, $\Phi(x, y, t)$ may be found from linear theory (cf. Newman, 1971, Chapter V)

$$
n(x, t)=-\frac{1}{g} \frac{\partial \phi(x, D, t)}{\partial t}
$$

If $\bar{\phi}(x, y)$ is the potential outside the cylinder in nondimensional form and with the time dependence separated, we can write the non-dimensional surface elevation

$$
\begin{equation*}
\eta(x)=i \bar{\phi}(x, D) \tag{V. 20}
\end{equation*}
$$

The reflection and transmission coefficients may then be written from V.19:

$$
\begin{align*}
& \mathcal{T}=i e^{-i k x}\left\{\lim _{x \rightarrow \infty} \bar{\phi}(x, D)\right\} \tag{V. 21.1}\\
& \boldsymbol{Q}=e^{i k x}\left\{\lim _{x \rightarrow-\infty} i \bar{\phi}(x, D)-e^{i k x}\right\} \tag{V. 21.2}
\end{align*}
$$

To evaluate $\lim _{x \rightarrow+\infty} \bar{\phi}(x, h)$ we may once again utilize Green's theorem (eqn. III. 7). If $\vec{\rho}$ is a point on the free surface (X, D), and \vec{r} is a point on the cylinder surface $\left(\mathrm{X}_{\mathrm{s}}, Y_{\mathrm{S}}\right.$), we may write

$$
\begin{gathered}
\phi(\vec{\rho})=\phi_{O}(\vec{\rho})+A\left[\ln \left(\rho_{L} / \rho_{R}\right)+H(\vec{\rho})\right] \\
-\frac{1}{2 \pi} \int_{C} \phi_{S O}(\vec{r}) \frac{\partial G}{\partial n}(\vec{\rho} \mid \vec{r}) d \ell_{r}-\frac{1}{2 \pi} \int_{C} G(\vec{\rho} \mid \vec{r}) \frac{\partial \phi_{O}(\vec{r})}{\partial n} d \ell_{r}
\end{gathered}
$$

Taking the limit of both sides for $x \rightarrow \pm \infty$, we obtain

$$
\begin{gathered}
\lim _{x+ \pm \infty} \bar{\phi}(\vec{\rho})=i e^{i k x}+A \lim _{x+ \pm \infty} H(x, D) \\
-\frac{1}{2 \pi} \int_{C} \Phi_{S O}(\vec{r}) \frac{\partial G+}{\partial n}(\vec{\rho} \mid \vec{r}) d \ell_{r}-\frac{1}{2 \pi} \int_{C} G^{+}(\vec{\rho} \mid \vec{r}) \frac{\partial \phi_{O}(r)}{\partial n} d \ell_{r}
\end{gathered}
$$

The asymptotic form of Green's function has been introduced:

$$
\begin{gather*}
G(\vec{\rho} \mid \vec{r})=\lim _{x \rightarrow \pm \infty} G(\vec{\rho} \mid \vec{r}) \tag{V. 23}\\
=\frac{-i 2 \pi\left(K^{2}-v^{2}\right) \cosh K y \cosh K Y_{S} e^{+i K\left(x-x_{s}\right)}}{K\left(K^{2} D-D+v\right)}
\end{gather*}
$$

where $v=\omega^{2} R / g$

The value of $\lim _{x \rightarrow \pm \infty} H(x, D)$ may be found by setting, as we did in Chapter III,

$$
\begin{aligned}
2 n\left(\rho_{L} / \rho_{R}\right)+H(\vec{\rho})=G\left(\vec{\rho} \mid \vec{\rho}_{\ell}\right)-G\left(\vec{\rho} \mid \vec{\rho}_{r}\right)+F(\vec{\rho}) \quad \text { V. } 24 \\
\text { where } \quad \vec{\rho}_{\ell}=(-1,0) \\
\vec{\rho}_{r}=(1,0)
\end{aligned}
$$

$F(\vec{p})$ is computed numerically over the surface of the cylinder (cf. Chapter III). Taking the limit of both sides of eqn. V. 24 we find

$$
\lim _{x \rightarrow+\infty} H(x, D)=\lim _{x \rightarrow+\infty}[G(x, D \mid-1,0)-G(x, D \mid 1,0)+F(x, D)]
$$

From V. 23, taking $\left(x_{s}, y_{s}\right)=(\pm 1,0)$, we get, after some algebraic reduction,

$$
\begin{align*}
& \lim _{x \rightarrow+\infty}[G(x, D \mid-1,0)-G(x, D \mid 1,0)] \\
= & \frac{-4 \pi\left(K^{2}-v\right) \cosh K D \sin 2 K e^{+i K x}}{K\left(K^{2} D-D+v\right)} \tag{V. 25}
\end{align*}
$$

 values of $F(\vec{p})$ calculated in the determination of $H\left({ }^{*}\right)$.

$$
\begin{aligned}
& e^{+i K x_{s}} \\
& F\left(x_{s}, Y_{s}\right) \\
& \lim _{\rightarrow} F(x, D)=\frac{i\left(K^{2}-v^{2}\right) \cosh K D}{K^{2} D-D+v} \\
& \text { - [} \quad \text { i } \cosh K y_{s} \cos \theta+\sinh K y_{s} \sin \\
& +\frac{\cosh K_{Y_{S}}}{K}\left(\frac{\partial h_{1}\left(x_{S}, y_{S}\right)}{\partial n}+i \frac{\partial h_{2}\left(x_{S}, y\right.}{\partial n}\right.
\end{aligned}
$$

where

$$
\begin{aligned}
\left(x_{s}, y_{s}\right) & =(\cos \theta, \sin \theta) \\
h_{1}\left(x_{s}, y_{s}\right) & =\operatorname{Re}\left\{G\left(x_{s}, y_{s} \mid-1,0\right)-G\left(x_{s}, y_{s} \mid 1,0\right)\right\} \\
h_{2}\left(x_{s}, y_{s}\right) & =\operatorname{Im}\left\{G\left(x_{s}, y_{s} \mid-1,0\right)-G\left(x_{s}, y_{s} \mid 1,0\right\}\right. \\
\frac{\partial}{\partial n} & =\cos \theta \frac{\partial}{\partial x_{s}}+\sin \theta \frac{\partial}{\partial y_{s}}
\end{aligned}
$$

We may write the reflection coefficient in terms of integrals which must be evaluated numerically.

$$
\begin{aligned}
& \boldsymbol{Q}=\frac{\left(K^{2}-1\right) \cosh K D}{Q}\left\{\int_{0}^{\pi} e^{i K x_{s}(i \operatorname{coshK}}{ }_{s} \cos \theta+\operatorname{sinhKy} y_{s}\right)\left(\phi_{s o}(\theta)\right. \\
& +e^{i K x_{5}} \frac{\operatorname{coshKy}}{\cosh K D} d \theta \\
& +i A \int_{0}^{\pi} e^{i K x_{s}} I\left(i \cosh K y_{s} \cos \theta+\sinh K D \sin \theta\right) F\left(x_{s}, y_{s}\right) \\
& \left.\left.+A \frac{\cosh K x_{s}}{K}\left(\frac{\partial h_{1}\left(x_{s}, y_{S}\right)}{\partial n}+i \frac{\partial h_{2}\left(x_{s}, y_{S}\right)}{\partial n}\right)\right] d \theta-\frac{4 \pi \sin 2 K}{K}\right\} \\
& \text { where } Q=K D-D+v
\end{aligned}
$$

The first term in brackets yields the reflection coefficient for the cylinder with no gap.

Values of \boldsymbol{R} were computed by the same program used in the force computations (Appendix F). Figures V. 4 and V. 5 show the results of these computations along with the experimental points.

For the sake of comparison, the reflection coefficient is also computed using a formula derived by Mei (1969). Mei calculated the reflected wave by writing an integral equation similar to eqn. III. 7 and solving it by means of a Born approximation (cf. Morse and Feshbach, V. II, p. 1073). This method utilizes as a first approximation to the flow the potential due to Rayleigh for waves over a gentle bottom slope. This potential is then inserted into the right-hand side of the integral equation to yield a second approximation.

A comparison of Mei's solution with the $\varepsilon=0$ case (Figures V.5 and V.6) show the errors introduced in the assumption of small bottom slope for the case of a semicircular cylinder.

The results of the reflection coefficient computations again reveal a remarkably large gap effect. The reflection
 $\varepsilon=.0416$.

In the experiments, this corresponds to a gap width of $1 / 8^{\prime \prime}$ for a $3^{\prime \prime}$ cylinder. This result follows closely the results of Tuck in his solution to the transmission of water waves through a slit in a vertical wall (solved in Appendix A). Tuck's solution yielded transmission coefficients as high as .65 for a ratio of gap width to depth of submergence of 0.05 (Figure V.7).

Tuck's results have been confirmed by the exact theory of Guiney (1971). The extraordinary transmission energy seems to be due largely to the unrealistic assumption of zero thickness.

In this thesis, an attempt is made to check the results experimentally. Figures V. 5 and V. 6 contain data points selected from some 60 test runs made at the M.I.T. Marine Hydrodynamics Laboratory (see Chapter VI). Considerable scatter in the data which appears to be linked to a faulty wave probe leave the reliability of the reflection coefficient
data in doubt. There does, however, seem to be a definite trend for the data to take on higher values than those predicted by the present theory. This result would be expected

:he characteristic impedance of the Elow (Plates 7 through 12) do indeed at the gaps, thus supporting the sts are important at the gaps.

วf experimental results appears in

sional Structures

ade here to solve the problem of 1 objects (e.g., hemispheres). conclusions based on the results se reported herein.
, althougn no analytic solutions ical solution to the first order ast submerged 3-dimensional shapes Y well established (see e.g., Miln et al). These solutions arise umerical scheme for solving the for the scattered wave. Where ith exact solutions, agreement has d Halkyard calculated the added
separation would increas gaps. Photographs of tr show the creation of jel claim that real fluid e

A further discussis Chapter VI.

V. 3 Forces on Three-Dii

No attempt has bee
flow past three-dimensi We may, however, draw sc for the two-dimensional

It may be stated t have been found, the nu "no gap" problem of flo of arbitrary form is fa gram and Halkyard, Garr out of a straightforwar Fredholm integral equat comparisons are possibl been excellent (Milgram
mass of a heaving sphere to within 3 of Havelock's value).
Such solutions are exactly equivalent to the first order, or "zero gap", solution found in Chapter III for the twodimensional cylinder. There is no reason to believe that the qualitative effects of a gap about the base perimeter of a bottom mounted three-dimensional object would not be the same
\qquad

.n a manner i.	forces will be augmented by the effects of the ga similar to that found in the results of this the
:he inside	We have already noted (in Section IV.2) tha
ly case.	region will experience a first order pressure in
Its about	This being true, we may make the following state
sar the	the forces on a three-dimensional object mounted
	bottom.
Srom that	1) The vertical force on the object will diffe
zero to	computed for no gap by an amount ranging fr
iugmenta-	the full anount of the zero-gap force. Thi
1d is	tion is mostly dependent on the wave period
1.	fairly insensitive to changes in the gap wi
: depen-	2) The horizontal force is augmented by an amo
small gap	dent on the wave period and the gap width.
1e object,	will significantly affect the added mass of
at for the	but the effect may be less pronounced than
je) of the	cylinder since the overall added mass (bloc
nisphere	three-dimensional object is less (.5 for a
	vs. 1.0 for a cylinder).

Generally, therefore, the most crucial implication of this theory pertains to the vertical force. To examine this effect the Froude-Krylov force has been computed for a hemisphere with a radius of half the water depth. The FroudeKrylov force is that force computed assuming no scattered wave. The pressure is therefore

$$
p(x, y, z)=\frac{e^{i K x} \cosh K y}{\cosh K D}
$$

which may be integrated over the surface of a hemisphere (times the respective direction cosine) to yield the total force.

$$
\begin{aligned}
& F_{r}= \text { non-dimensional force } \\
&=-\frac{2}{\pi \cosh K D} \int_{0}^{2 \pi} d \theta \int_{0}^{\pi} d \phi\left[\sin \phi \cos \phi e^{i K x} \cosh K y\right] \\
&\text { where } \left.\quad \begin{array}{rl}
x & =\cos \theta \sin \phi \\
& y
\end{array}\right)=\cos \phi
\end{aligned}
$$

The diffracted wave potential, and the resulting force, has also been computed for this case by Garrison. Both these forces are displayed in Figure V.7.

To account for the inside pressure the average of the outside pressures about the base of the hemisphere is computed:

$$
\bar{p}=\frac{1}{2 \pi} \int_{0}^{2 \pi} p(x, 0, z) d \theta=\frac{1}{2 \pi \cosh K D} \int_{0}^{2 \pi} e^{i K \cos \theta} d \theta
$$

The total force, taking into account the inside pressure, may be calculated from V. 28 and $V .29$:

$$
\begin{equation*}
F_{V T}=F_{V}+\pi \bar{p} \tag{V. 30}
\end{equation*}
$$

(Note the non-dimensional radius is 1.0)
Garrison performed a series of experiments on a submerged hemisphere to check his diffraction theory. Garrison does not indicate the size of the hemisphere used in his tests, but he does state that it was supported a distance of $1 / 16^{\prime \prime}$ off the bottom of the wave tank. If the dome radius is taken to be 4" (a reasonable size in Garrison's wave tank), this corresponds to an ε of .0156 .

In his tests, Garrison noted "As a consequence of the 1/16 inch clearance left between the model and channel floor the pressure inside the model did not remain constant but fluctuated as the waves passed."

In order to correlate his experimental results with the diffraction theory, Garrison measured the pressures at a point inside the dome. Under the assumption that the pressure throughout the interior of the dome is the same, the measured force was corrected by subtracting the effects of this internal pressure (i.e., eqn. $V .30$ solved for F_{r}). These corrected results are shown in Figure V. 8.

Unfortunately, the uncorrected forces and the measured internal pressures are not available. Garrison has reported, however, that he has been successful in using the average
pressure about the outside base of a tank to account for the inside pressure. Using this correction, he was able to show excellent agreement with experiments. Much of this data is proprietary.

It should be pointed out, however, that Garrison's experiment cannot be considered conclusive. only one wave gage was used to measure the wave height. The gage was placed far enough upstream to be unaffected by the scattered wave, but any standing waves either from the beach or the tank walls would result in inaccurate wave height measurements. Also, in the case of horizontal forces, the load cells were connected to the dome with wire line diverted around a $5^{\prime \prime}$ ball bearing pulley. The pulley friction would adversely affect the force measurements.

Figure V. 9 shows the results of Garrison's horizontal force measurements for two values of R / D (or, in Garrison's notation, h / a). The agreement with diffraction theory is excellent for this case, indicating that the effect of the gap is indeed small. The gap width for this case was a nominal $1 / 16^{\prime \prime}$. The dome was actually placed as close to the channel bottom as physically possible, so that these results may be considered a "zero-gap" result. Unfortunately, no data was taken for larger gaps.

Figure V. 8
WERTICAL FORCE ON HEMISPHERE WITH ANB WITHOUT BOTTOM PRESSURES. INCLUDING DATA FROM GARRISON (1971)

[^3]

V. 4 Experiments on Two-Dimensional Shapes

Herbich and Shank (1971) conducted an extensive series of experiments on various two-dimensional shapes, including a cylinder mounted close to the bottom. Their predicted forces based entirely on measured data are compared with fnrnes nredinted hy the oresent theorv in Fiaures V. 10 and

VI. EXPERIMENTAL INVESTIGATION

The theory presented in this thesis is predicated on the validity of the assumptions of linearized potential theory, namely, that viscous effects are negligible, that the flow is irrotational, that the fluid is incompressiole, and that all the dependent variables are linearly dependent on the incident wave amplitude. In addition to these constraints, it should also be noted that the method used to derive the source/sink strength has not been rigorously justified, neither in this thesis nor in the literature, and may be open to question. The question arises, therefore, as to what exactly will be gained from model testing.

On the one hand, we may hope to duplicate the conditions in the test facility which most closely correspond to the assumptions of the theory, thus allowing us to judge from the test results the actual validity of the theory in the context of the given assumptions. On the other inand, we might choose to duplicate to whatever extent possible the actual conditions encountered during an engineering application (i.e., a full scale tank at sea) to observe the validity of the assumptions of Iinear theory themselves.

A scientist would select the first approach, and would scale his experiments accordingly. An average engineer might hope to perform the full scale tests so that he could have numbers to apply to his next design. A good engineer would
take the first approach, while at tine same time examining the phenomena excluded from the linear theory in order to determine the scale effects.

The problem with all this, of course, is that we are restricted to the budget and the test facilities at hand, and must be satisfied with that.

It should be noted, and we will discuss this in more detail in the followina pages, that not all of the pitfalls The instruments and the methods of data reduction and analysis are wrought with dangers and must not be neglected in this discussion.

First we will turn to the hydrodynamic effects.

VI. 1 Forces on Objects in a Real Fluid

Tne total force on an object in a moving fluid may be represented by the formula

$$
\begin{equation*}
F=\rho V C_{M} \frac{d U}{d t}+\frac{1}{2} \rho A_{P} C_{D} U|U| \tag{VI. 1}
\end{equation*}
$$

where A_{p} is the area of the subinerged object projected in the direction of the flow. This is the complete form of Morison's equation (Morison, et al, 1951), the first part of which was introduced in Chapter V (eqn. V.6).

The major failing of the Morison equation is that it does not take into account the variability of the coefficients C_{M} and C_{D} with time.

Some investigators have expressed the mass coefficient as a variable quantity. McNown and Wolf write F as

$$
\begin{equation*}
F=\rho V\left[\frac{d(k U)}{d t}+\frac{d U}{d t}\right]+\frac{1}{2} \rho C_{D} A_{0} U|U| \tag{VI. 2}
\end{equation*}
$$

where k is the added mass.
This formulation agrees with the classic results of Stokes on the motion of pendulums in a liquid, namely, that the presence of viscosity and variable acceleration augment the mass coefficient.

Keulegan and Carpenter (1958) have justified Morison's formula by introducing a new coefficient, k ', such that

$$
\begin{equation*}
\frac{d}{d t}(k U)=k^{\prime} \frac{d U}{d t} \tag{VI. 3}
\end{equation*}
$$

from which we get

$$
c_{M}=1+k^{\prime}
$$

Clearly, the above expression (eqn. VI.3) is subject to doubt. Nevertheless, the Morison equation has been shown by experience to be useful in the prediction of forces, particularly in sinusoidal motion.

Keulegan and Carpenter attempted to answer the questions raised in this discussion by examining the forces on objects subjected to oscillatory motion.

since their results lead to a justification of linear theory in relation to the present thesis.

Consider the forces on an object in a velocity field where $U(t)$, the velocity, is

$$
\mathrm{U}(\mathrm{t})=-\mathrm{U}_{\mathrm{m}} \cos \omega \mathrm{t}
$$

If R is a characteristic length of the body (radius of a cylinder), the important physical parameters of the problem become

F force (dependent variable)
ω circular frequency of motion
R length scale
U_{m} velocity
p fluid density
v fluid kinematic viscosity
Keulegan and Carpenter have arranged these parameters in non-dimensional units to arrive at the functional equation

$$
\begin{equation*}
\frac{F}{\rho U_{\mathfrak{m}}^{2} R}=f\left(\theta, \frac{U_{m} T}{R}, \frac{U_{m} R}{v}\right) \tag{VI. 4}
\end{equation*}
$$

where

$$
\theta=\omega t
$$

$$
U_{m} T / R=\text { "period parameter" }
$$

з flow from
left [i.e.,
VI. 5

Using the fact that F is periodic and that left to right is the reverse of that from right $F(\theta)=-F(\theta+\pi)]$, the force may be written

$$
\begin{aligned}
\frac{F}{\rho U_{m}^{2} \mathrm{R}}= & A_{1} \sin \theta=A_{3} \sin 3 \theta+A_{5} \sin 5 \theta \\
& +B_{1} \cos \theta+B_{3} \cos 3 \theta+\ldots
\end{aligned}
$$

where the coefficients retain the dependence on $U_{m} T / R$ and $U_{m} R / v$ but are now constant in time.

Morison's equation may be written

$$
\begin{equation*}
\frac{F}{U_{m}^{2} R}=\frac{V C_{M}^{\omega}}{U_{m} R} \sin \theta-\frac{A_{o} C_{D}}{R}|\cos \theta| \cos \theta \tag{VI. 6}
\end{equation*}
$$

This can be expanded by noting that

$$
\begin{aligned}
|\cos \theta| \cos \theta & =a_{0}+a_{1} \cos \theta+a_{2} \cos 2 \theta+\ldots \\
\text { where } a_{n} & =0 \quad n \text { even } \\
a_{n} & =(-1)^{n+1 / 2} \frac{8}{n\left(n^{2}-4\right)} \quad n \text { odd }
\end{aligned}
$$

Then we have

$$
\begin{gather*}
\frac{F}{\rho U_{m}^{2} \mathrm{R}}= \\
\mathrm{A}_{1} \sin \theta+\mathrm{A}_{3} \sin 3 \theta+\mathrm{A}_{5} \sin 5 \theta+\ldots \tag{VI. 7}\\
\\
+\mathrm{B}_{1}^{\prime}|\cos \theta| \cos \theta+\mathrm{B}_{3}^{\prime} \cos 3 \theta+\ldots \\
\text { where }{ }^{B_{1}^{\prime}}=\mathrm{B}_{1} / \mathrm{a}_{1} \\
\mathrm{~B}_{3}^{\prime}=\mathrm{B}_{3}-\frac{\mathrm{a}_{3}}{\mathrm{a}_{1}} \mathrm{~B}_{1}
\end{gather*}
$$

Comparing VI. 6 and VI.7, the following relationships may be established for C_{M} and C_{D}.

$$
\begin{aligned}
C_{M}(\theta)= & \frac{U_{m} T}{\pi^{2} R}\left[A_{1}+A_{3}+A_{5}+2\left(A_{3}+A_{5}\right) \cos 2 \theta\right. \\
& \left.+2 A_{5} \cos 4 \theta+\ldots\right]
\end{aligned}
$$

$$
\begin{aligned}
C_{D}(\theta)= & -2 B_{1}^{\prime}+\frac{2}{|\cos \theta|}\left[2\left(B_{3}^{\prime}-B_{5}^{\prime}\right)+4\left(B_{5}^{\prime}-B_{3}^{\prime}\right) \cos 2 \theta\right. \\
& \left.-4 B_{5}^{\prime} \cos 4 \theta+\ldots\right]
\end{aligned}
$$

If C_{M} and C_{D} are constant, A_{n} and B_{n}^{\prime} become zero for all $n>1$. Keulegan and Carpenter used this fact to define the consimaty braveragel velum of those wopfingionts to he

$$
\begin{align*}
& C_{M}^{O}=\frac{U_{m}^{T A} 1}{\pi^{2} R} \\
& C_{D}^{O}=-2 B_{1}^{\prime}
\end{align*}
$$

They measured forces on cylinders in a slosh tank, Fourier analyzed the force output to obtain $A_{n},_{n}$ from VI.5, and plotted $C_{M}^{\circ}, C_{D}^{\circ}$ and the difference function

$$
R=A_{3} \sin 3 \theta+A_{5} \sin 5 \theta+B_{3}^{\prime} \cos 3 \theta+B_{5}^{\prime} \cos 5 \theta \quad V I \cdot 10
$$

In tidis way Keulegan and Carpenter were able to assess the variability of C_{M} and C_{D} with time and determine the relative importance of Reynold's number and the period parameter on the coefficients A_{n}, B_{n}.

Working with cylinders ranging in diameter from . 5 inches to 3.0 inches, they were able to conclude that the drag and inertial coefficients were effectively constant throughout the phase of the motion as long as $U_{m} T / R$ was sufficiently

This phenomenon can be explained by a simple physical explanation. The value $\mathrm{U}_{\mathrm{m}} \mathrm{T} / \mathrm{R}$ indicates the ratio of the distance traveled by a particle of fluid during a cycle to the radius of the cylinder:

$$
U_{m} T / R=\pi \ell / R
$$

where ℓ is the excursion distance of a fluid particle. Thus if $U_{m} T / R=2 \pi$, a fluid particle will just traverse the full diameter of the cylinder. Photographs of the flow indicate that no separation occurs for such small motion, and except for the effect of surface friction, one would expect potential theory (wnich predicts a constant C_{M} and $C_{D} \equiv 0$) to be valid.

It should be noted inere that the results for a cylinder (as found by Keulegan and Carpenter) are not entirely sufficient to determine the relative real fluid effects for the submerged cylinder with a gap. First of all, no account was taken in Keulegan and Carpenter's work of the free surface effect (their models were placeä in a deep tank). This will be discussed in the next section. Secondly, and most importantly, the flow through the gaps is more characteristic of the flow past a flat plate than flow past a cylinder. In .
ly shedding and flow separation - photograpns of flow past flat irpenter indicate that eddies $1 \equiv$ onset of motion. This is
this case the occurrence of is almost inevitable. In fa plates taken by Keulegan anc form almost immediately upor
indeed the case for the gap flow as well, as may be observed from photographs of dye streaks in the area of the cylinder (Plates 7 through 10). Plate 10 shows the formation of an eddy for $\mathrm{U}_{\mathrm{m}} \mathrm{T} / \mathrm{R}=.092$.

The drag coefficient for plates is considerably larger than that for cylinders. C_{D} takes on values of greater than 10, for example, for a flat plate (flow incident) at small values of $U_{m} T / R$ (R for the plate is taken as the plate length). We may be comforted by the fact, however, that even at such large values of C_{D}, the total drag force is still much less than the total inertial force. If, for example, (cf. Wiegel, 1964, Chapter 11)

$$
\frac{C_{M} V}{C_{D} A_{0} a}=\frac{\pi C_{M} R}{2 C_{D} a} \gg 1
$$

we may neglect drag forces entirely. Taking $R=3.0^{\prime \prime}$, $a=0.1 ", C_{M}=2.0$ and $C_{D}=5.0$ we get

$$
\frac{\pi C_{M}^{R}}{2 C_{D}}=19
$$

This ratio is probably much larger since the selection of $C_{D}=5.0$ seems unrealistically large. The results presented in Appendix G indicate that less than 10% of the total force comes from drag.

VI. 2 Considerations in the Analysis of Test Data

We have stated that, for $U_{m} T / R$ small, we may adopt the Morison equation for the description of forces on the submerged cylinder. This statement should be qualified for the case of our cylinder with a gap. Equation VI. 6 cannot easily be applied to the vertical forces since fluid accelerations
 vertical force is due primarily to the hydrodynamic head associated with the wave crest passing over the object. It is difficult to calculate the "drag" in tine vertical direction, although one interpretation might be that it consists of the force due to the $\frac{1}{2} \rho U^{2}$ pressure from Bernoulli's equation. In this case the "drag" would be in phase with the pressure force. At any rate, no attempt is made here to associate a mass coefficient with the vertical force.

We have already mentioned that the Morison equation, and Keulegan and Carpenter's analysis, did not account for the free surface effect. Specifically, it should be noted that a component of the inertial force will arise from the scattered waves. These waves are generated when a large amount of the flow from the incident waves is diverted, generating outwardly progressing waves. The scattered waves, therefore, produce pressures in phase with the incident wave velocity (since this is when the most fluid is diverted). A modification of Morison's formula to take this into account would appear as

$$
\begin{equation*}
F=C_{1} \frac{d U}{d t}+\frac{1}{2} \rho A_{0} C_{D} U|U|+C_{2} U \tag{VI. 11}
\end{equation*}
$$

For our purposes, however, it is not necessary to use the expression in this form. Instead, we will treat C_{M} and U in Morison's equation as complex quantities and take the real part of the expression to obtain the phase of the inertial force, i.e.

$$
\text { phase }=\tan ^{-1}\left[\frac{c_{2} U}{C_{1}(d U / d t)}\right]
$$

We also wish to non-dimensionalize with respect to the incident wave amplitude rather than the velocity. Write the incident wave

$$
\begin{gather*}
\operatorname{n}_{i n}(x, t)=\operatorname{Re}\left[a_{1} e^{i K_{1} x} e^{-i \omega t}\right. \\
\left.+a_{2} e^{i K_{2} x} e^{-i 2 \omega t}+a_{3} e^{i K_{3} x} e^{-i 3 \omega t}+\ldots\right] \tag{VI. 12}
\end{gather*}
$$

where $a_{1} a_{2}, a_{3} \ldots$ are complex numbers representing the wave amplitude of the respective Fourier component of the wave.
K_{n} is tine wave number corresponding to the frequency $n \omega$, i.e., the solution to $K_{n} \tanh K_{n} D=n^{2} \omega^{2} / g$

In the following discussion, we shall adopt the notation used previously, i.e., $\theta=\omega t$. Also, as in the previous chapters the real part of the expressions will be assumed the physical quantity of interest.

The horizontal and vertical forces, and the moment on the object may be written respectively,

$$
\begin{align*}
F_{H} & =\sum_{n=1}^{N} H_{n} e^{-i n \theta} \\
F_{V} & =\sum_{n=1}^{N} V_{n} e^{-i n \theta} \tag{VI. 13.2}\\
M & =\sum_{n=1}^{N} M_{n} e^{-i n \theta}
\end{align*}
$$

VI. 13.3

The reflection coefficient of the beach in the wave tank proved to reach values of , 19. Thus it is necessary to account for waves impinging on the object from both directions. Figure VI. 1 snows the situation. The incident waves

coming from the left and the right are both reflected and transmitted by the cylinder, We may write

$$
\begin{align*}
& \eta_{1}(x, t)=\sum_{n=1}^{N} a_{n} e^{i K_{n} x} e^{-i n \theta} \tag{VI. 14.1}\\
& \eta_{2}(x, t)=\sum_{n=1}^{N} a_{2 n} e^{-i K_{n} x} e^{-i n \theta} \tag{VI. 14.2}\\
& \eta_{3}(x, t)=\sum_{n=1}^{N} a_{3 n} e^{-k K_{n} x} e^{-i n \theta} \tag{VI. 14.3}\\
& \eta_{4}(x, t)=\sum_{n=1}^{N} a_{4 n} e^{i K_{n} x} e^{-i n \theta} \tag{VI. 14.4}
\end{align*}
$$

Let us define the respective reflection and transmission coefficients as

$$
\begin{align*}
& R_{L n}=a_{3 n} / a_{1 n}\left(\text { with } a_{2 n}=0\right) \tag{VI. 15.1}\\
& T_{L n}=a_{4 n} / a_{1 n}\left(\text { with } a_{2 n}=0\right) \\
& R_{R n}=a_{4 n} / a_{2 n}\left(\text { with } a_{1 n}=0\right) \tag{VI. 15.3}\\
& T_{R n}=a_{3 n} / a_{2 n}\left(\text { with } a_{1 n}=0\right)
\end{align*}
$$

VI. 15.4

These definitions are consistent with linear theory, which assumes no harmonic generation by the obstacle or through shallow water effects (see, e.g., remarks by C. C. Mei at the M.I.T. Hydrodynamics Laboratory seminar of September 27,1971). It should be pointed out that some nonIinearities are to be expected, particularly for the high frequency waves which are quite steep. In these cases the representation of the coefficients above would have to include cross-reflection and cross-transmission coefficients,
for example,

$$
\begin{gathered}
\mathrm{R}_{\operatorname{Lmn}}=\mathrm{a}_{3 m} / a_{1 n} \\
\left(\text { with } \eta_{2}(x, t)=0, a_{1 i}=0, i \neq n\right)
\end{gathered}
$$

The generation (or amplification) of certain harmonics was ooserved in a few cases. This appeared as 2nd harmonic "noise" superposed on the long waves downstream from the object. No attempt has been made to analyze this harmonic distortion, but the complete record of wave harmonics is included in Appendix G for the use of anyone interested in pursuing that study.

In the context of linear theory, therefore, we take note of the fact that

$$
\begin{align*}
& \mathrm{R}_{\mathrm{Rn}}=\overline{\mathrm{R}}_{\mathrm{Ln}} \\
& \mathrm{~T}_{\mathrm{In}}=\mathrm{T}_{\mathrm{Rn}} \tag{VI. 16.2}
\end{align*}
$$

where \bar{R}_{In} denotes the complex conjugate of R_{Ln}.
The proof of VI. 16 is given by Newman (1965) following the metnod of Kreisel (1949).
VI.2.1 Horizontal Forces

Given the incident waves $\eta_{1}(x, t)$ and $\eta_{2}(x, t)$ from VI. 14 , the velocity potential may be written (in dimensional form):

$$
\begin{aligned}
\Phi(x, y, t) & =\Phi_{1}(x, y, t)+\Phi_{2}(x, y, t) \\
& =-\frac{i g}{\omega} \sum_{n=1}^{N} \frac{\left[a_{n} e^{i K_{n} x}+a_{2 n} e^{\left.-i K_{n} x\right]}\right.}{\cosh K_{n} D} \cosh K_{n} y e^{-i n \theta}
\end{aligned}
$$

In Morison's formula, take U to be the horizontal
velocity at the sea bed (the axis of the cylinder) so that

$$
\begin{align*}
U(t) & =\frac{\partial}{\partial x} \Phi(0,0, t) \\
& =\frac{g}{\omega} \sum_{n=1}^{N} \frac{\left[a_{1 n}-a_{2 n}\right]}{\cosh K_{n} D} K_{n} e^{-i n \theta}
\end{align*}
$$

from which we may identify

$$
U_{n}=\frac{g K_{n}\left(a_{1 n}-a_{2 n}\right)}{\omega \cosh K_{n} D}
$$

The acceleration may similarly be written

$$
\begin{align*}
\frac{d U(t)}{d t} & =\sum_{n=1}^{N} \frac{d U_{n}}{d t} e^{-i n \theta} \tag{VI. 19}\\
\frac{d U_{n}}{d t} & =-i n \omega U_{n}
\end{align*}
$$

Now Morison's equation may be written

$$
\begin{aligned}
F_{H}(t) & =-\frac{i \rho g \pi R^{2}}{2} \sum_{n=1}^{N} \frac{n C_{M n} K_{n}\left(a_{1 n}-a_{2 n}\right) e^{-i n \theta}}{\cosh K_{n} D} \\
& +\left.\left.\frac{\rho g^{2} K}{\omega^{2}}\right|_{n=1} ^{N} \frac{C_{D n} K_{n}\left(a_{1 n}-a_{2 n}\right) e^{-i n \theta}}{\cosh K_{n}^{D}}\right|_{n=1} ^{N} \frac{C_{D n} K_{n}\left(a_{1 n}-a_{2 n}\right) e^{-i n \theta}}{\cos n K_{n}^{D}} \\
& \simeq \sum_{n=1}^{N}\left(\frac{-i \rho g \pi R^{2}}{2}\right)\left[\frac{n C_{M n} K_{n}\left(a_{1 n}-a_{2 n}\right)}{\cosh K_{n}^{D}}\right] e^{-i n \theta} \quad \text { VI. } 20
\end{aligned}
$$

where the ärag coefficient has been assumed to be zero, as it snould for

$$
\frac{U_{m}^{T}}{R}=\frac{2 \pi g}{\omega^{2} R} / \sum_{n=1}^{N} \frac{K_{n}^{2}\left(a_{1 n^{-}} a_{2 n}\right)^{2}}{\cosh ^{2} K_{n} D}<5
$$

An examination of the test records, Appendix , reveals that tiris is indeed the case.

Turning to VI. 20 we can identify the terms of VI. 13 as

$$
H_{n}=\frac{-g R}{2}\left[\frac{n C_{M n} K_{n}\left(a_{1 n}-a_{2 n}\right)}{\cosh K_{n}^{D}}\right]
$$

from which

$$
C_{M n}=\frac{i 2 H_{n}}{\rho g \pi R^{2} n K_{n}\left(a_{1 n^{-a}} 2 n\right)}
$$

VI. 21

This value of $C_{M n}$ is computed from the reauced test data.
Its value and phase for $n=1$ is given for tests 9-17 in Table VI.5. Other harmonic values may be found in the analysis program output listed in Appendix G.

VI.2.2 Vertical Forces

The measured values of the vertical force were normalized with respect to the superposed incident wave amplitudes over the center of the cylinder. Using the normalization of II.4.5, the normalized force may be written

$$
\begin{align*}
& \bar{F}_{V}=\sum_{n=1}^{N} \bar{V}_{n} e^{-i n \theta} \\
& \bar{V}_{n}=\frac{2 V_{n}}{\pi \rho g R\left(a_{1 n}+a_{2 n}\right)} \tag{VI 23}
\end{align*}
$$

These values are reproduced for the first harmonic in Table VI. 4 for higher harmonics in the computer listings, Appendix G.
VI.2.3 Moments

The theoretical value of the moment about the axis of the cylincer, for linear theory, is zero. This is the case since all pressures act normal to the cylinder surface and therefore act along a radius line. All forces are directed through the axis of the cylinder which therefore cannot experience a moment.

Figure VI. 2 shows the schematic configuration of the cylinder, its supporting struts and the load cells.

The moment about the point at which the line of action of the horizontal force intersects the vertical centerline is

$$
M=\left(F_{1}+F_{2}\right)\left(Y_{1}-\Delta\right)+F_{4}\left(Y_{2}-\Delta\right)
$$

FIGURE VI. 2
SCHEMATIC OF CYLINDER AND LOAD CELLS
where $\Delta=$ the distance above the bottom through which the horizontal force acts.

Notice that the two terms of VI. 23 will generally be of opposite sign but nearly equal magnitude. M is expected to be relatively small (theoretically zero) so the percentage error in M for small errors in F_{1}, F_{2} and F_{4} will be large. Taking the moment about the point $\left(0, Y_{1}\right)$ yields

$$
M=F_{4}\left(y_{2}-y_{1}\right)+F_{H}\left(y_{1}-\Delta\right)
$$

In this case we have less sensitivity of M to numerical errors in the terms on the right.

The moment is normalized with respect to the incident wave from the left:

$$
\begin{equation*}
\bar{M}_{n}=\frac{M_{n}}{m_{2} \rho \pi R^{2} a_{1 n}} \tag{VI. 25}
\end{equation*}
$$

'The calculation of these quantities from the test data will be discussed in Section VI. 4.

VI. 3

Experimental Test Setup

Figure VI. 3 shows a schematic drawing of the test facilities including the wave paddle, wave probes, dynamometer and cylindrical model. Plate 1 shows the entire test setup, including the instrumentation rack. Plate 2 shows the model in position for a test. Plate 3 shows the cylinder out of water. Plate 4 shows a closeup of the dynamometer, including force blocks 3 and 5 (in the foreground), the load carrying members and the stiffening strip for force block \#l (in the lower right). Plate 5 is a view of the wavemaker from above, and Plate 6 shows a view of the waterline of the tank looking upstream from the position of the nodel.

The equipment for this test is described in a thesis by Kern (1971). The following will describe the main features of tue equipment.

EXPERIMENTAL SET UP INCLUDING WAVE TANK AND INSTRUMENTATION

PLATE 2
SEMI-CIRCULAR CYLINDER SHOWN IN TEST POSITION

PLATE 3
CYLINDER SHOWN ATTACHED TO 3-COMPONENT DYNAMOMETER

VI.3.1 The Wave Tank

The wave tank was designed by Mr. Dean Lewis of the Marine Hydrodynamics Laboratory under the direction of Professor Jerome Milgram. It is constructed of aluminum and measures sixteen feet long by one foot wide by two feet deep. Windows in the sides of the tank aid in flow visualization (Plate 2). The side walls of the tank are parallel to within . Ol inch.

Since the two-foot deptin nade tests on bottom structures in shallow and internediate depth waves difficult, a special aluminum platform was constructed to act as a ground plane raising the effective bottom of the tank 14 inches. This platform extends tie entire length of the wave tank (excluding tine beacn). It is constructed py bolting two $1 / 4$ " aluminum plates together with $1 / 4 "$ plywood sandwiched between and extending $1 / 16^{\prime \prime}$ beyond the side edges (to protect the anodized surface of the wave tank). Plexiglass legs support the structure of this bottom. The legs were milled in order to insure a level surface.

A $12^{\prime \prime} \times 12^{\prime \prime} \times 3 / 4^{\prime \prime}$ aluminum plate pivoting about the raised bottom was installed in the tank to act as the wave paddle.

VI.3.2 The Wave Absorbing Beach

The final 5 feet of the wave tank is filled with tightly compressed rubberized horse hair mattress material. The
intersection of the beach with the water line has a gradual slope falling off sharply below the water line. The reflection coefficient from the beach is highly dependent on the wave number. Figure VI. 4 shows values of the reflection
 The coefficient peaks at about .20 for $K D \simeq .90$. The wavelength corresponding to $K D=.90$ of 2.9 feet corresponds roughly to the distance between the cylinder and the beach, indicating that resonance might possibly be the source of the large refiection coefficients for these wavelengths.

VI. 3.3 The Dynamometer

Forces on the cylinger are measured b_{y} mans of five 2 ib. Schaevitz inductance type load cells connected by rigid wires to a frame onto which are attacned the supporting struts for the cylinder. The load cells are attached to a rigid frame which is clamped to the wave tank during testing. The configuration of the load cells, the rigid connecting wire rods, and the cylinder support frame is such that the horizontal and vertical loads are transmitted separately to load cells $1,2,4$ (horizontal) and 3,5 (vertical). Figure VI.l snows tnis schematically.
a force accing along the axis of any load cell causes the ferrite core of an inauctor to deflect slightly, alterirg tne inciuctance in an $L C$ circuit and thus the frequency in a aigh frequency oscillator circuit. These high frequency

signal fluctuations are converted to dc voltages for data acquisition. The output of the signal conditioning equipment is a dc voltage linearly proportional to the force acting on the load cell up to approximately 2 pounds of force.

The cylinder, its supporting frame, and the load cells comprise a linear mass spring system (neglecting non-linear hydrodynamic drag). A horizontal force of 1 lb. at the center of the cylinder caused a net deflection of the cylinder of approxinately . 20 incnes. To minimize this deflection, steel cantilevered deflection arms were rigged to stiffen the load cells measuring horizontal forces (load cells 1, 2 and 4 - see Plates 2, 3 and 4). With the stiffened load cells the deflection of the cylinder was reduced to . 06 incues/lb.

Under typical conditions, tie cylinder would experience forces of .3-.5 lbs. The velocity of the cylinder under these conditions would reach a maximum of $(2 \pi \times .03)=$. 188 incn/sec. as compared with the maximum particle velocity of the water of approximately 2.0 inch/sec.

The natural period of vibration of the cylinder out of water was observed to be .0575 sec . for horizontal motion. The vertical motion was critically damped.
VI. 3. 4 The Wave Probes

Four distinct wave components exist in the far field (away from the cylinder, the beach or the wavemaker):
$\eta_{1}(x, t), \eta_{2}(x, t), \eta_{3}(x, t)$ and $\eta_{4}(x, t)$. To establish the height and phase of each component four simultaneous measurements at different positions are necessary. To accomplish this, four capacitance type wave height sensors were placed in the tank, two upstrean and two downstream. The sensors consist of a conducting wire surrounded by plastic insulation vertically immersed in the liquid. The water acts as a grounded surface, so that a capacitance is set up between it and the conducting wire which is connected in an L-C oscillator circuit. The frequency of the $I-C$ circuit comprising tie wave prove capacitance modulates a known fixed frequency signal. The resultant FM signal is demodulated to give a dc signal output which is linearly proportional to the wave neight.

Normally the resolution of the wave probes is reduced by the effects of surface tension. A miniscus layer of water attaches itself to the probe as the waves travel over, thus distorting the true reading of the probe. To diminish this effect, each probe is mounted on the cone of a small radio loud speaker which is driven by a 60 Fz . signal from a power supply. The probes are then vibrated vertically with an amplitude of approximately $1 / 16^{\prime \prime}$, or roughly the amplitude of tine miniscus, which will alternately ride up and down the wave probe 60 times a second. Taking the average of the 60 Hz. signal on the output thus yielas the correct wave height measurement.

The wave probes proved sensitive to the proximity of metal objects. In the tank, the capacitance between the wave probes and the side of the tank itself proved a bothersome component, since the output would vary depending on the relative position of the probe to the windows. Care was taken to calibrate the probes in their actual test position so that no calibration errors would result from a zero-shift.

Another problem was encountered with the oscillator circuits. In particular, one circuit became unstable during the testing and caused severe jumps in the output for one wave probe. After some unsuccessful attempts to interchange tne bad oscillator, the experiments were run with the questionable wave probe in position 3 (see Figure VI.2) where it would have the least effect on the incident wave measurements. With the exception of this probe, the calibration of the wave probes proved repeatable to within 5%, which figure may be taken as the accuracy of the incident wave amplitude measurements.
VI.3.5 Analog Signal Processing

If the calibration coefficient of the $i^{\text {th }}$ force block is k_{i} lb./volt, we may write the forces and moment on the cylinder as

$$
\begin{array}{ll}
F_{H}=k_{1} v_{1}+k_{2} v_{2}+k_{4} v_{4} & \text { VI.26.1 } \\
F_{V}=k_{3} v_{3}+k_{5} v_{5} & \text { VI.26.2 } \\
M=k_{4} V_{4}\left(Y_{2}-y_{1}\right)+F_{H}\left(y_{1}-\Delta\right) & \text { VI.26.3 } \tag{VI. 26.3}
\end{array}
$$

where v_{i} represents the voltage output of the ith signal conditioner. In order to utilize tiese signals, the signals are filtered and added by means of separate operational amplifier circuits. These circuits are shown schematically in Figure VI.5. The inputs are the voltages $v_{1}, v_{2}, v_{3}, v_{4}$ and v_{5} respectively. The outputs correspond (in volts) to. the quantities $C_{H} F_{H}, C_{V} F_{V}$ and $C_{m}\left[M-F_{H}\left(Y_{1}-\Delta\right)\right]$ respectively. C_{H}, C_{V} and C_{m} may be adjusted by altering the gain of the operational amplifier circuits. The outputs of each circuit may be written

$$
\begin{array}{ll}
V_{H}=\frac{R_{11} R_{7}\left(1-i R_{7} \omega C_{1}\right)}{R_{10}\left(1+R_{7}^{2} \omega^{2} C_{1}{ }^{2}\right)}\left[\frac{v_{1}}{R_{1}}+\frac{v_{2}}{R_{2}}+\frac{v_{4}}{R_{4}}\right. & \text { VI.27.1 } \\
V_{V}=\frac{R_{8}\left(1-i R_{8} \omega C_{2}\right)}{1+R_{8}^{2} \omega^{2} C_{2}^{2}}\left[\frac{v_{3}}{R_{3}}+\frac{v_{5}}{R_{5}}\right] & \text { VI. } 27.2 \\
V_{M}=\frac{v_{4} R_{9} R_{13}\left(1-i R_{9} \omega C_{3}\right)\left(1-i R_{13} \omega C_{4}\right)}{R_{6}\left(1+R_{9}^{2} \omega^{2} C_{3}^{2}\right)\left(1+R_{13}^{2} \omega^{2} C_{4}^{2}\right)} & V I .27 .3 \tag{VI. 27.3}
\end{array}
$$

where the signals are considered to be monochromatically oscillatory:

$$
v_{i}=\left|v_{i}\right| e^{-i \omega t}
$$

For the case of a general periodic signal, each Fourier component will experience a different gain. From VI. 26 we note that the resistances $R_{1}-R_{5}$ must be selected so that

$$
\frac{\mathrm{v}_{1}}{\mathrm{R}_{1}}+\frac{\mathrm{v}_{2}}{\mathrm{R}_{2}}+\frac{\mathrm{v}_{4}}{\mathrm{R}_{4}}=\mathrm{k}_{1} \mathrm{v}_{1}+\mathrm{k}_{2} \mathrm{v}_{2}+\mathrm{k}_{4} \mathrm{v}_{4} \quad \text { and }
$$

Figure VI. 5

$$
\frac{v_{3}}{R_{3}}+\frac{v_{5}}{R_{5}} \simeq k_{3} v_{3}+k_{5} v_{5}
$$

The RC circuits served as an initial low pass filter for the signals from the instruments. Values of RC were chosen to attenuate effectively all signals over 120 Hz . For a typical value of $R C=.045$, the attenuation at 60 Hz . is 60\%, at 120 Bz . 99\%. Similar circuits for amplifying the wave probes were designed to give similar attenuation.

The output of the Op. Amp. was fed into a hybrid EAI 680 analog/IBM 1130 digital computer system at the M.I.T. Mechanical Engineering Computer Facility. An existing program, ADCNV, was used to sample the signals at a fixed sample rate, place the sampled (digitized) data on the 1130^{\prime} s disk memory and punch the stored data on IBM cards for further processing.

All tests were digitizec using a sample rate of 250 kz . This prevented aliasing of signals up to 125 Hz . (signals above 120 Hz . are filtered in the op. Amp. circuits). Digital filtering will be discussed in VI. 7.

VI. 3.6 The Test Section

The cylinders were fabricated from $1 / 8^{\prime \prime}$ thick plexiglass tubing 4" and 6" in diameter. To connect the cylinder (halftube) to the dynamometer frame two $3 / 8^{\prime \prime}$ holes were tapped in the upper surface and $3 / 8^{\prime \prime}$ rods inserted to serve as struts (see Plates 3 and 4). The force on the $3 / 8^{\prime \prime}$ rods is negligible compared to the force on the cylinder (tests showed the
force on the rods less than 0.5% of the cylinder forces).
The $3^{\prime \prime}$ radius cylinder was used in tests 9-16, 18 and 19. The $2^{\prime \prime}$ cylinder was used in test 17 .

VI. 4 Instrument Calibration

Calibration was performed by applying a known physical input to each sensor and recording the output (in volts) of the appropriate circuit. The voltage readings were taken on a Hewlett-Packard two-channel recording oscillograph. Periodic checks were made to insure that the voltages read by the oscillograph were equal to those reaching the digitizing system at the Mechanical Engineering Computer.

VI. 4.1 Wave Probe Calibration

The wave probes were calibrated by adjusting the output for the probes in still water to be zero and raising the probe carriages on metal strips of $1 / 8^{\prime \prime}$ and $1 / 4^{\prime \prime}$ dimensions. The voltage cinange recorded indicated the calibration coefficient for eacn probe.

Tables VI. 1 and VI. 2 summarize the overall calibration coefficients and positions of the wave probes for the 10 runs.

All probe signals were amplified in operational amplifier circuits possessing the following transfer function:

$$
\begin{equation*}
v_{\text {out }}=\frac{R_{\text {out }} v_{i n}\left(1-i R_{\text {out }} \omega C\right)}{R_{\text {in }}\left(1+R_{\text {out }}^{2} \omega^{\omega^{2} C^{2}}\right)} \tag{VI. 28}
\end{equation*}
$$

		Table WAVE PROBE	ITION	
- Run	x_{1} (inches)	x_{2} (inches)	x_{3} (inches)	x_{4} (inches)
9	-42.250	-36.875	23.375	28.125
10	".	"	"	N
11	*	"	"	"
12	${ }^{\prime \prime}$	"	28.125	32.875
13	"	"	23.375	28.125
14	"	"	1	"
15	"	"	"	"
16	"	"	28.125	32.875
17	11	"	"	"
18	-	-	-	-
19	-	-	-	-

Table VI. 2WAVE PROBE CALIBRATION		
Calibration Coefficients (volts per inch)		
Runs	9-17	18,19
$\mathrm{C}_{\text {Wl }}$	-21.6	-20.8
$C_{\text {W2 }}$	-26.0	-16.8
$C_{\text {w }}$	-17.2	-50.0
$\mathrm{C}_{\mathrm{W} 4}$	030.4	-30.3

If A_{i} is the amplitude of a wave of frequency w at probe i, from VI. 28 we can see that its value may be written

$$
\begin{equation*}
A_{i}=\frac{v_{\text {out }}}{C_{w i}}\left(1+i R_{\text {out }} \omega C\right) \tag{VI. 29}
\end{equation*}
$$

For probes 1, 2 and 4

$$
\mathrm{R}_{\text {out }} \mathrm{C}=.022
$$

and for probe 3

$$
\mathrm{R}_{\text {out }} \mathrm{C}=.044
$$

VI.4.2 Dynamometer Calibration

Each force block was calibrated individually by applying calibration weights of .5 lb . and 1 lb . The gain of the signal conditioning equipment was adjusted so that load cells 1, 2 and 4 (horizontal load) each yielded (as close as possible) 1 volt/lb. Load cells 3 and 5 were adjusted to give 5 volts/lb. With the precise coefficients determined for each load cell, the values of $R_{1}, R_{2}, R_{3}, R_{4}$ and R_{5} were determined. For all tests, the following values were set:

$$
\begin{array}{ll}
\mathrm{R}_{1}=20,000 \Omega & \mathrm{R}_{10}=50,000 \Omega \\
\mathrm{R}_{2}=19,500 \Omega & \mathrm{R}_{12}=15,500 \Omega \\
\mathrm{R}_{3}=20,000 \Omega & \mathrm{R}_{13}=100,000 \Omega \\
\mathrm{R}_{4}=50,000 \Omega & \mathrm{C}_{1}=.22 \mu \mathrm{fd} \\
\mathrm{R}_{5}=50,000 \Omega & \mathrm{C}_{2}=.22 \mu \mathrm{fd} \\
\mathrm{R}_{6}=100,000 \Omega & \mathrm{C}_{3}=.22 \mu \mathrm{fd} \\
\mathrm{R}_{7}=(\text { see Table VI.3) } & \mathrm{C}_{4}=.22 \mu \mathrm{fd} \\
\mathrm{R}_{8}=500,000 \Omega * & { }^{*} \mathrm{R}_{8}=200,000 \Omega \text { for test } 9.1
\end{array}
$$

R_{11} was adjusted for various test runs to maintain an acceptable signal level. Table VI. 3 shows the values of R_{7} and C_{H} for each test run. The values of C_{V} and C_{m} were

$$
\begin{aligned}
C_{\mathrm{V}} & =20.0 \text { volts } / 1 \mathrm{~b} . \text { (test } 9.1 \text {) } \\
& =50.0 \text { volts } / 1 \mathrm{~b} . \text { (all other tests) } \\
\mathrm{C}_{\mathrm{m}} & =-1.50 \text { volts } / \mathrm{ft} . \text { 1b. (all tests) }
\end{aligned}
$$

Table VI. 3
HORIZONTAL FORCE CALIBRATION DATA

Run	$\mathrm{R}_{7}\left(8 \times 10^{-3}\right)$	C_{H} (volts/1b.)	Run	$\mathrm{F}_{7}\left(18 \times 10^{-3}\right)$	$\mathrm{CH}_{\mathrm{H}}($ volts $/ \mathrm{lb}$.
9.1	200	-20.0	15.1	200	-20.0
9.2	200	-20.0	15.2	200	-20.0
9.3	400	-40.0	15.3	200	-20.0
9.4	400	-40.0	15.4	200	-20.0
9.5	400	-40.0			
9.6	400	-40.0	16.1	200	-20.0
9.7	400	-40.0	16.2 16.3	200	-20.0
10.2	200	-20.0	16.4	400	-40.0
10.3	200	-20.0			
10.4	400	-40.0	17.1	400	-40.0
10.5	400	-40.0.	17.2	400	-40.0
10.6	400	-40.0	17.3	400	-40.0
10.7	400	-40.0	17.4	400	-40.0
10.8	200	-20.0	17.5 17.6	600 600	-60.0 -60.0
11.1	200	-20.0			
11.2	200	-20.0	18.1	200	-20.0
11.3	200	-20.0	18.2	200	-20.0
11.4	400	-40.0	18.3	200	-20.0
		-20.0	18.4	200 200	-20.0 -20.0
12.1 12.2	200	-20.0 -20.0	18.6	200	-20.0
12.3	200	-20.0	18.7	200	-20.0
12.4	400	-40.0	19.1	200	-20.0
13.1	200	-20.0	19.2	200	-20.0
13.2	200	-20.0	19.3	200	-20.0
13.3	200	-20.0	19.4	200	-20.0
13.4	400	-40.0	19.5	200	-20.0
13.5	400	-40.0	19.6	200	-20.0
14.1	200	-20.0			
14.2	200	-20.0			
14.3	200	-20.0			
14.4	200	-20.0			
14.5	400	-40.0			

VI. 5 Signal Processing and Analysis

Once the signals have passed through the analog circuits the EAI/IBM digitizing system and finally punched on cards, the problem remains to determine the non-dimensionalized forces, moment, reflection coefficients and any other parameters of interest. In order to find all the desired information the digitized data must be Fourier analyzed to determine the amplitudes of the first several Fourier components. The digitized data contains frequency components up to 120 Hz . Since the highest frequency water wave we will investigate has a fundamental frequency of approximately 2 Hz, we may ignore all frequencies above 10 tiz . (5th harmonic) or so. In order to avoid aliasing, the Fourier analysis must use very small (less than $1 / 240$ sec, to eliminate 120 Hz . aliasing) time steps for integration, or, as an alternative, the digital data may be put through a digital low pass filter. This latter approach was usec here (see Appendix F for details of the numerical filter).

After passing through the low pass filter, the data may be Fourier analyzed using relatively large time steps. The filtered data is in the form of a matrix, $Y_{i j}$, with i corresponding to a time coordinate. $j=0$ is arbitrarily taken to correspond to $t=0, j=N$ to $t=T$. The channels are numbered as follows:

Channel

1 Output for wave probe 1
2 Output for wave probe 2
3 Output for wave probe 3
4 Output for wave probe 4
5 Output for F_{Hi} (horizontal force)
6 Output for M (moment)
7 Output for F_{V} (vertical force)
Given the filtered data $y_{i j}$ and the fundamental frequency $\omega_{1}=2 \pi / T$, the Fourier components of the signals may easily be computed:

$$
\begin{equation*}
S_{i n} \simeq \frac{\Delta \tau}{T} \sum_{\mathrm{m}=1}^{\mathrm{N}_{\mathrm{T}}} y_{\mathrm{im}} \exp (\mathrm{inm} \omega \Delta \tau) \tag{VI. 28}
\end{equation*}
$$

The Fourier components nust still be converted to physical units. In order to reproduce the original physical quantities, it is not only necessary to utilize the static calibration coefficients C_{1}, C_{2}, etc., but it is also necessary to recognize that the anlog filters and amplifiers contain frequency dependent characteristics. To retrieve the initial input, therefore, it is necessary to correct for the effect of the operational amplifier circuits on the signal.

Equation VI. 7 shows this correction for the wave probe channels:

$$
\begin{gathered}
A_{i n}=\frac{S_{i n}}{C_{w i}}\left(1+i R_{o u t}{ }^{n \omega} l^{D}\right) \\
i=1-4
\end{gathered}
$$

The equivalent expressions for the forces and moment follow from VI. 27

$$
\begin{array}{ccc}
A_{5 n}=\frac{S_{5 n}}{C_{H}}\left(1+i R_{7} n \omega C_{I}\right) & \text { VI.30.1 } \\
A_{6 n}=\frac{S_{6 n}}{C_{m}}\left(1+i R_{9} n \omega C_{3}\right)\left(1+i R_{13} \omega C_{4}\right) & \text { VI.30.2 } \\
A_{7 n}=\frac{S_{7 n}}{C_{V}}\left(1+i R_{8} n \omega C_{2}\right) & \text { VI.30.3 } \tag{VI. 30.3}
\end{array}
$$

where $A_{i n}$ represents the $n^{\text {th }}$ Fourier component of the $i^{\text {th }}$ channel output (in correct units) corrected for the analog filtering.

VI. 5.1 Dynamic Effects

We have seen that the dynamometer system with the cylinder attached represents a linear mass/spring system. Figure VI. 6 snows a typical response curve for an impulsive loading applied to the cylinder in a horizontal direction. The

amplitude of the deflection of the load cells is therefore influenced by the resonant interaction of the cylinder/ dynamometer system with the periodic (unknown) forcing function. Ideally this effect would be eliminated by making the system infinitely stiff. Unfortunately, an infinitely stiff system would not deflect at all, and no voltages would be read.

The compromise reached here consisted of the inclusion of the stiffening bars on load cells 1,2 and 4 to reduce the natural period of the norizontal motion to .2 sec . (see Section VI.5). From the theory of single degree of freedom linear system response, the araplitude of the output signal for a given sinusoidal input may be written (Den Hartog, 1956)

$$
\begin{aligned}
y(t) & =Y e^{-i \omega t} \\
Y & =\frac{\left(X / k_{0}\right) \dot{e}^{-i x}}{\sqrt{\left(I-\bar{B}^{2}\right)^{2}+(2 \zeta \beta)^{2}}}
\end{aligned}
$$

where X is the input amplitude (complex)

$$
\begin{equation*}
B_{i n}=A_{i n} e^{i \psi_{i n} \sqrt{\left(1-\beta_{i n}^{2}\right)^{2}+\left(2 \zeta_{i} \beta_{i n}\right)^{2}}} \tag{VI. 31}
\end{equation*}
$$

where $B_{i n}=$ the $n^{\text {th }}$ Fouri:x component of the $i^{\text {th }}$ channel signal (in physical units) corrected for analog filtering and for the dynamic response of the dynamometer system

$$
\beta_{i n}=n \omega_{1} / \omega_{n i}
$$

$$
\omega_{n i}=\text { natural circular frequency of motion for the }
$$ cylinder in the $i^{\text {th }}$ channel mode

$\zeta_{i}=$ damping ratio in the $i^{\text {th }}$ channel mode $\psi_{i n}=\tan ^{-1}\left[\frac{2 \zeta_{i} \beta_{i n}}{1-\beta_{i n}^{2}}\right]$
$B_{\text {in }}$ represents the Fourier component of the physical quantity of interest. We may write, for example,

$$
\begin{equation*}
\eta_{1}\left(x_{1}, t\right)+\eta_{2}\left(x_{1}, t\right)=\operatorname{Re}\left\{\sum_{n=1}^{5} B_{i n} e^{-i n \omega t}\right\} \tag{VI. 32}
\end{equation*}
$$

where only the first five harmonics have been included.

VI.5.2 Added Mass Computations from System Vibrations

Before turning to the computations for the incident and reflected waves, we will look at the vibrations of the system from the standpoint of calculating the added mass of the cylinder.

As was mentioned in section VI.5, the natural period of the system was increased from .0575 sec . for the cylinder out of water to approximately .2 sec . when the cylinder is immersed (considering only the horizontal motion).

It is possible to calculate the added mass based on these observations. The following discussion will treat mas the effective mass of the cylinder and k as the effective spring constant of the cylinder. Thus,

$$
\begin{equation*}
T_{n}=2 \pi \sqrt{m} / \bar{k} \tag{VI. 33}
\end{equation*}
$$

For the cylinder out of water,

$$
\begin{aligned}
T_{\mathrm{n}} & =.0575 \mathrm{sec} \\
\mathrm{k} & =200 \mathrm{lb} . / \mathrm{ft} . \quad \text { (measured) }
\end{aligned}
$$

therefore

$$
m=.0168 \text { b b }
$$

We have used VI. 33 under the assumption that the damping ratio is zero. Figure VI. 5 shows a typical curve of the free vibrations of the cylinder. This case is typical of the vibrations, and as can be seen, is quite lightly damped. The largest damping ratio observed during the tests was . 0285 . We may continue this discussion based on an undamped oscillator, keeping in mind only the fact that the damping must be included for forced motion near resonance.

Continuing with the discussion of the added mass, we may write for the cylinder immersed in water

$$
\begin{equation*}
T_{n}=2 \pi \sqrt{\left(m+m^{\top}\right) / k} \tag{VI. 34}
\end{equation*}
$$

where $m^{\prime}=$ displaced plus added mass of cylinder due to motion of the water and wave generation.

From VI. 34

$$
\begin{equation*}
m^{\prime}=k\left(T_{n} / 2 \pi\right)^{2}-m \tag{VI. 35}
\end{equation*}
$$

In order to compute m^{\prime} it is necessary to compute the gap flow problem for the case of an oscillating cylinder. This problem is related to the wave force problem via the Haskind's relations. For the solution to the radiation problem, see Appendix E.

The trend of the data may be seen from the following tabulations by gap width:

The calculations of the added mass correlate. with the trend of the data, but appear to be lower by approximately 25\%. This fact could easily be attributed to an error in the measurement of the spring constant k (the value of k was arrived at by measuring a .06" deflection with a ruler!).
..As_a_cherk.an_the onmouter proarap f- the dampina coefficients computed for the oscillating cylinder ware used to calculate C_{M} for the same frequency using equation $E .18 . \quad C_{M}$ was also calculated by the wave force method of program MAIN (Appendix F) and the two values compared. In all cases checked these values agreed to within 5\%.

E $\begin{array}{r}\text { ¢ } \\ \text { 它 } \\ \text { U }\end{array}$	$\stackrel{N}{N}$			$\stackrel{\sim}{\sim}$		$\stackrel{\infty}{\sim}$	$\begin{aligned} & \infty \\ & 0 \\ & -1 \end{aligned}$		1	1	1		Results for Cylinder Vibration Tests	
	∞ $\xrightarrow{+}$ \sim	I	1	-	n \sim \sim	\pm i	ㅇ -	$\xrightarrow[\sim]{\text { N }}$	-	$\stackrel{\square}{2}$	$\stackrel{\infty}{\sim}$			
~	n a \sim 0	1	1	-	0 0 n 0 0	+	n N N	이N -	\circ \sim \sim 0	N N \sim 0	O N O.			
F_{-1}	O N N	1		$\xrightarrow{\text { O }}$		-	8 +	O N N	\bigcirc 7 7 \square	$\xrightarrow{\infty}$	8 8 -1 -1			
$m>$	-	1	1		O		O 0	+	0 \sim 0 0	¢ N/ N	-			
E-	O N - +	1	1		0 8 	$\stackrel{10}{\sim}$	응 - -		$\stackrel{\sim}{\sim}$	N H ?	8 8			
	$\underset{-}{7}$	${ }_{\text {m }}^{\infty}$	$\stackrel{\infty}{\infty}$	$\stackrel{\sim}{\sim}$	$\stackrel{N}{N}$	$\stackrel{\infty}{\infty}$	$\stackrel{\infty}{\text { - }}$	-	$\stackrel{\infty}{\text { न- }}$	$\underset{\sim}{\sim}$				
$\cdots \stackrel{-}{\square}$	$\stackrel{O}{0}$	$\stackrel{\circ}{\text { ¢ }}$	$\stackrel{\square}{\text { m }}$	-	m	\cdots	-	m	-	N	$\begin{aligned} & 0 \\ & \dot{N} \end{aligned}$			
$\bigcirc \stackrel{-}{\text { - }}$	0	$\stackrel{\square}{6}$	-	-	$\stackrel{+}{0}$	0	$\stackrel{\square}{10}$	in	\bigcirc	0				
4 0 0 E	σ	$\stackrel{-}{-}$	$\stackrel{-1}{-1}$	$\xrightarrow{\text { ¢ }}$	$\underset{\sim}{m}$	\pm	$\stackrel{\sim}{\sim}$	$\stackrel{\square}{\square}$	$\xrightarrow{\sim}$	$\underset{\substack{3 \\ 7}}{\substack{2}}$	$\stackrel{\text { O}}{\substack{\text { - }}}$			

VI.5. 3 Force Computations

Given $B_{i n}$, $i=1-4$, we nay now calculate the four wave functions $a_{i n}, i=1-4$. To do this, write the wave amplitude for each of the four positions as the sum of the respective components (referring to equations VI.I4):

$$
\begin{aligned}
n\left(x_{1}, t\right)= & n_{1}\left(x_{1}, t\right)+\eta_{3}\left(x_{1}, t\right) \\
= & \sum_{n=1}^{5} B_{l n} e^{-i n \omega t} \\
= & \sum_{n=1}^{5}\left[a_{l n} e^{i K_{n} x_{1}}+a_{3 n} e^{-i K_{n} x_{1}}\right] e^{-i n \omega t} \\
& \text { where } \omega=2 \pi / T
\end{aligned}
$$

This yields

$$
\begin{equation*}
B_{l n}=a_{1 n} e^{i K_{n} x_{l}}+a_{2 n} e^{-i K_{n} x_{1}} \tag{VI. 37.1}
\end{equation*}
$$

Similar equations for eacn position yield

$$
\begin{array}{ll}
B_{2 n}=a_{1 n} e^{i K_{n} x_{2}}+a_{3 n} e^{-i K_{n} x_{2}} & \text { VI.37.2 } \\
B_{3 n}=a_{4 n} e^{i K_{n} x_{3}}+a_{2 n} e^{-i K_{n} x_{3}} & \text { VI.37.3 } \\
B_{4 n}=a_{4 n} e^{i K_{n} x_{4}}+a_{2 n} e^{-i K_{n} x_{4}} & \text { VI.37.4 }
\end{array}
$$

Solving VI. 37 for $a_{1 n}, a_{2 n}, a_{3 n}$ and $a_{4 n}$ by straightforwara algebraic means yields the following solution:

$$
a_{1 n}=\frac{i\left({ }_{1} n_{n} e^{-i K_{n} x_{2}}-{ }_{b_{2 n}} e^{-i K_{n} x_{1}}\right)}{2 \sin K_{n} \Delta_{1}}
$$

$$
\begin{array}{cc}
a_{3 n}=\frac{i\left(B_{2 n} e^{i K_{n} x_{1}}-B_{1 n} e^{\left.i K_{n} x_{2}\right)}\right.}{2 \sin K_{n} \Delta_{1}} & \text { VI.38.2 } \\
a_{2 n}=\frac{i\left(B_{3 n} e^{-i K_{n} x_{4}}-B_{4 n} e^{-i K_{n} x_{3}}\right)}{2 \sin K_{n} \Delta_{2}} & \text { VI.38.3 } \\
a_{4 n}=\frac{i\left(B_{4 n} e^{i K_{n} x_{3}}-B_{3 n} e^{i K_{n} x_{4}}\right)}{2 \sin K_{n} \Delta_{2}} & \text { VI.38.4 } \\
\text { where } \Delta_{1}=x_{2}-x_{1} & \\
\Delta_{2}=x_{4}-x_{3} &
\end{array}
$$

The normalized forces may now be determined directly. From VI. 21, write

$$
\begin{equation*}
c_{M n}=\frac{i 2 B_{5 n}}{\rho g \pi R^{2} n \bar{K}_{n}\left(a_{12}-a_{2 n}\right.} \tag{VI. 39}
\end{equation*}
$$

From VI. 22, obtain

$$
\begin{equation*}
\overline{\mathrm{V}}_{\mathrm{n}}=\frac{2 \mathrm{~B}_{7 n}}{\pi \rho g R\left(\mathrm{a}_{1 \mathrm{n}}+\mathrm{a}_{2 \mathrm{n}}\right)} \tag{VI. 40}
\end{equation*}
$$

And from VI. 25,

$$
\begin{equation*}
\bar{M}_{\mathrm{n}}=\frac{2 \mathrm{~B}_{6 n}}{\rho \pi R^{2} a_{1 n}} \tag{VI. 41}
\end{equation*}
$$

VI. 5. 4 Reflection and Transmission Coefficients

Noting the relationships for the reflection and transmission coefficients, eqns. VI. 15 and VI. 16 , we may write

$$
\begin{aligned}
& a_{3 n}=R_{L n} a_{1 n}+T_{R n} a_{2 n} \\
& a_{4 n}=T_{I n} a_{1 n}+R_{L n} a_{2 n}
\end{aligned}
$$

Setting $\tau_{n}=T_{L n}=T_{R n}$ and $R_{n}=R_{L n}=\bar{R}_{R n}$,

$$
\begin{align*}
& a_{3 n}=R_{n} a_{1 n}+\tau_{n} a_{2 n} \tag{VI. 42.1}\\
& a_{4 n}=\tau_{n} a_{1 n}+\bar{R}_{n} a_{2 n} \tag{VT. 42.2}
\end{align*}
$$

In the following we will drop the R subscript, it being understood that the equations apply to each harmonic.

Let the reflection coefficient be

$$
\mathrm{R}=\mathrm{r}_{1}+i \mathrm{r}_{2}
$$

and the transmission coefficient

$$
=t_{1}+i t_{2}
$$

where r_{1}, r_{2}, t_{1} and t_{2} are real quantities.
Also, let

$$
a_{i}=p_{i}+i q_{i}
$$

where p_{i} and q_{i} are real numbers.
Equations VI. 42 may then be written

$$
\begin{aligned}
& p_{3}=r_{1} p_{1}-r_{2} q_{1}+t_{1} p_{2}-t_{2} q_{2} \\
& q_{3}=r_{1} q_{1}+r_{2} p_{1}+t_{1} q_{2}+t_{2} p_{2} \\
& p_{4}=r_{1} p_{2}+r_{2} q_{2}+t_{1} p_{1}-t_{2} q_{1} \\
& q_{4}=r_{1} q_{2}-r_{2} p_{2}+t_{1} q_{1}+t_{2} p_{1}
\end{aligned}
$$

The unknowns may easily be solved algebraically.

$$
\begin{array}{ll}
r_{1}=D_{1} / \text { Det } & \text { VI.43.1 } \\
r_{2}=D_{2} / \text { Det } & \text { VI.43.2 } \\
t_{1}=D_{3} / \text { Det } & \text { VI.43.3 } \\
t_{2}=D_{4} / \text { Det } & \text { VI.43.4 }
\end{array}
$$

where

$$
\begin{aligned}
& \operatorname{Det}=\left|\begin{array}{cccc}
p_{1} & q_{1} & p_{2} & -q_{2} \\
q_{1} & p_{1} & q_{2} & p_{2} \\
p_{2} & q_{2} & p_{1} & -q_{1} \\
q_{2} & -p_{2} & q_{1} & p_{1}
\end{array}\right| \\
& D_{i}=\operatorname{Det} \text { with } i^{\text {th }} \text { column replaced by } \\
& \quad\left(p_{3}, q_{3}, p_{4}, q_{4}\right)
\end{aligned}
$$

This operation must be carried out for each of the five harmonics in order to obtain the respective reflection and transmission coefficients.
VI. 6 Presentation of Results

A total of 19 tests were conducted, each test consisting of several runs corresponding to different wave periods. The results of the first eight tests are not reported here since the calibration coefficients of the wave probes were in doubt and the results meaningless. These early tests served mainly the purpose of working out experimental techniques.

The numbering sequence is retained here, however, since it is more convenient in referring to the computer output which is numbered by the original sequence.

Table II. 4 summarizes the parameters for tests 9-17. All these tests were run with the cylinder a measured distance above the bottom. Runs were made with gap widths of $1 / 8^{\prime \prime}, 1 / 4^{\prime \prime} 3 / 8^{\prime \prime}$ and $1 / 2^{\prime \prime}$. The results for the first harmonic quantities are summarized in Table VI.5. Notice that all tests, with the exception of 17 , were run using the $3^{\prime \prime}$ radius cylinder.

Figures VI. through VI. show these resilts graphically. Figures VI. and VI. show the phases of the horizontal and vertical Eorces for a number of cases. The theoretical values are plotted for each case.

After conducting these tests it became apparent that the experimental scatter made it difficult to assess the exact effect of the gap as presented by the theory. The difference in vertical forces was nealigible for the gap widths tested and, while the general trend of the data appears correct, the mass coefficient could not really be resolved close enough to correlate with the logarithmic dependence or ε predicted.

To obtain a better verification of the variation of C_{M} with ε, test 18 was conducted in an attempt to simulate the zero-gap case. Plates 11 and 12 show the cylinder setup for this test. In order to block the flow through
the gaps as much as possible, a plate in the raised bottom of the tank was removed and the cylinder set in the slot. Plate 12 shows a closeup of this area with dye injected during the passing of a wave. While the flow is not completely blocked, a comparison with Plates 7, 8 and 9 shows a marked reduction.

The results for test 18 are shown in Figure VI. The mass coefficient has been significantly increased over the finite ε cases.

Computer Output of Results
Program DATA reduced and analyzed the data for each test run. Appendices G and H of this thesis present a complete record of the program output for tests 9 through 19.

The output in Appendix G shows the Fourier coefficients of the filtered data, the calculated wave parameters, the non-dimensional forces, and parameters concerning the test. Calibration data has been presented elsewhere in this chapter. (Tables VI.

The first part of this output, the complex fourier coefficients of the data, corresponds to the values ${ }^{\text {in }}$ discussed in the last chapter. The physical quantity corresponding to the output of channel may be written as

$$
x_{m}(t)=\operatorname{Re}\left\{\sum_{n=1}^{5} B_{m n} e^{-i n \omega t}\right\}=\sum_{n=1}^{5}\left[c_{m n} \cos n \omega t+d_{m n} \sin \omega t\right]
$$

The value of $c_{m n}$ and $d_{m n}$ are listed for each channel under the columns marked "cos" and "sin" respectively. The values for the first 5 harmonics are given.

The next section of output lists wave parameters. These may be defined as follows:

FREQUENCY $=n \omega, n$ being the harmonic number.
WAVE LENGTH = wave length in feet.
WAVE FM. LEFT:
AMP $=$ magnitude of $a_{i n}$ with units of inches.
PHASE $=$ phase of $a_{l n}$ in degrees.
WAVE FM. RIGHT:
AMP $=$ magnitude of $a_{2 n}$ with units of inches.
PHASE $=$ phase of $a_{2 n}$ in degrees.
REF. COEF:
AMP = magnitude of R_{n}. This is a dimensionless quantity, the designation "(in.)" in the program is an error. PHASE $=$ phase of R_{n} in degrees.
TRANS COEF:
AMP $=$ magnitude of τ_{n}, also a dimensionless quantity regardless of the program specification.
PHASE $=$ phase of τ_{n} in degrees.
$Q R T=$ value of $\left|R_{n}\right|^{2}+\left|\tau_{n}\right|^{2}$, theoretically equal to 1.0 for conservation of energy.

The output marked "NON-DIMENSIONAL FORCES" gives the following results for each harmonic:

FREQUENCY $=(n \omega)^{2} \mathrm{D} / \mathrm{g}$, non-dimensional depth.
$\mathrm{FH} \quad=$ magnitude of C_{mn} (eqn. VI. 39)
AH $\quad=$ phase of $C_{m n}$ in degrees.
FV $\quad=$ magnitude of \bar{V}_{n} (eqn. VI. 40)
$A V \quad=$ phase of \bar{V}_{n} in degrees
$F M=$ magnitude of \bar{M}_{n} (eqn. VI.41)
$\mathrm{AM} \quad=$ phase of $\overline{\mathrm{M}}_{\mathrm{n}}$ in degrees
KD = wave number times depth
KA = wave number times magnitude of $a_{1 n}$
FACTOR= coefficient used to compute non-dimensional forces. This is of no interest here.

The test parameters listed at the bottom of the output include the depth in feet, the ratio R / D, the gap width given in feet, the cylinder radius in feet and the wave period in seconds. The three factors labeled "ADF", "ADV" and "ACTOR" are of no interest.

Tests 18 and 19 were conducted without the use of the digitizer. For these runs, wave amplitudes and phases were visually picked directly off the oscillograph records. The analysis is therefore made for only the first harmonic. An error in the input of a calibration coefficient caused the values of FH printed for these tests to be off by a factor of $1 / 2$. To obtain the correct values of $F H$, multiply those given for tests 18 and 19 by two.

Appendix H lists the time history of the signals over one period for each channel. These are the values after passing through the high pass filter (Appendix D) but before
any Fourier analysis. A plot of these points would duplicate the signal received from the signal conditioning equipment. Tests 11,12 and 13 are not available in this form.

HORIZOMTAL FORCE COEFFICIENT FOR R/D $=.50$

E	
立	
Σ	
z°	
${ }^{*}$	
\pm	
${ }^{\underline{x}}$	
r	
\approx	
$\underset{x_{x}^{x}}{E}$	\%
$\underset{\sim}{E}$	
豆	
-	
$\begin{aligned} & \stackrel{3}{6} \\ & \underset{\sim}{6} \end{aligned}$	
$\underline{\text { z }}$	

VI. 7 Real Flow Througn Gaps

Tie inner solution for flow through the gaps indicates that the velocity reaches infinity at the eages. Real flow cannot attain infinite velocity, so it can be expected that this theory may be invalid in the regions adjacent to the cylincer edges.

In order to examine the flow, photographs of dye motion about the edges during the passage of various waves were taken. 2lates 7-10 show this flow for the values of $U_{m} T / R$ (the keulegan-Carpenter parameter), $K A$ and T indicated (A in the plates indicates the amplitudes of the incident wave from the left).

As indicated in these plates, the flow through the gaps does not conform to the inner flow sketched in figure III. 2. The streamlines separate from the cylinder and form a jet, encing with a single eddy at some distance from the edge. The strength of the jet is dependent on the relative wave height, or, more precisely, on the Keulegan-Carpenter parameter.

The effect of this diversion from the assumed flow may be approximated by considering the free streamline 510% through an orifice (cf. Milne-thompson, sec. 12.32). Qualitatively, it may be expectec that the effect of the gap will be less in the case of real fluid flow than in the idealized model, since the inertial pressure drop across the gap will
be less in the separated flow than in the attached case. On the other hand, the drag component of the force can be
 tend to shift the phase angle of the horizontal force, as indeed appears to be the case from Figures VI. 10 and VI.ll.

$$
\begin{gathered}
\text { PLATE } 7 \\
T=.90, \mathrm{KA}=.158, U_{m} T / R=1.60
\end{gathered}
$$

PLATE 8

$\mathrm{T}=1.30, \mathrm{KA}=.045, \mathrm{U}_{\mathrm{m}} \mathrm{T} / \mathrm{R}=1.20$

PLATE 9

$T=1.15, K A=.042, U_{m} T / R=.96$

PLATE 10
$T=1.30, K A=.0034, U_{m} T / R=.092$

PLATE II

CYLINDER IN POSITION FOR
"ZERO-GAP" TESTS

Plate 12
FLOW THROUGH GAP DURING
"ZERO-GAP" TESTS

The solution derived herein provides an adequate theory for predicting the forces on a submerged cylinder, as is apparent from the correlation of the theory with experiment. In particular, and of significant engineering importance, is the conclusion that the inside region experiences a constant pulsating pressure equal to the average of the pressures acting around the base.

The applicability of this conclusion to the practical problem of forces on a three-dimensional object has not been proven, but intuitive reasoning indicates that it is plausible. If the pressure inside of a "dome", for example, did not exhibit a first order variation, the pressure drop across चhe: would be first order. For very small gaps this seems unrealistic.

The effect on the horizontal force, for the cylinder, is the same order as the gap flow. This has less significant implications with regard to the three-dimensional case. Since in practice flow will be restricted either by design or by nature (through erosion), the effect of flow through the bottom may be less pronounced. It might be noted, however, that a poorly designed experiment on three-dimensional models could give erroneous horizontal force measurements. In particular, if a model is suspenced above the bottom in order to
provide a clearance for vertical motion, horizontal forces will be less than in more realistic setup with no clearance. The error can be expected, on the basis of this thesis, to be of the orger $1 / \ell n \in$.

With regards to both the vertical and the horizontal forces, the values computed on the basis of no gap appear to represent a conservative upper limit on the actual forces.

A more thorough investigation of the three-dimensional problem has not been carried out in this thesis. The same method could in principle be applied, however. To do this, the notential about a dome would have to be broken into its
186.

APPENDICES

The semi-intuitive ma ning procedure used in Chapter III may be shown to be equivanent to a more formal expansion procedure. To show this, we will consider the problem of a single slit in a vertical wall. The slit is a distance h below the free surface, and waves are incident from the left (see Figure A.l). This problem has been solved by Tuck (1969), and will be examined here only to illustrate the equivalence of two alternate matching schemes.

The vertical wall extencs to an infinite depth. The transmission coefficient depends on the slit width (d) and the depth of suomergence (i). Fie will thus assume that the perturbation parameter may be written as

$$
\varepsilon=d / h, \quad \text { A.l }
$$

and that the transmission coefficient, τ, goes asymptotically to zero for small ε.

Now we may represent the velocity potentials on eitier side of the barrier as follows:
left of wall: $\phi^{i}(x, y, \varepsilon)=\phi_{0}^{i}(x, y)+\alpha_{1}(\varepsilon) \phi_{1}^{\lambda}(x, y)$
A. 2.1
right of wall: $\phi^{r}(x, y, \varepsilon)=\phi_{o}^{r}(x, y)+\alpha_{1}(\varepsilon){ }_{1}^{r}(x, y)$

$$
\begin{equation*}
+\alpha_{2}(\varepsilon) \phi_{2}^{r}(x, y)+\ldots \tag{A. 2.2}
\end{equation*}
$$

$$
\text { where } \begin{aligned}
& (x, y)=(\hat{x}, \hat{y}) / h \\
& \hat{x} \text { and } \hat{y} \text { are dimensional variables } \\
& \lim _{\varepsilon \rightarrow 0} \frac{\alpha_{n+1}}{\alpha_{n}}=0 \\
& \lim _{\varepsilon \rightarrow 0} \alpha_{1}=0
\end{aligned}
$$

The boundary value problem satisfied by ϕ^{i} and ϕ^{r} is as follows:

$$
\begin{array}{lll}
\nabla^{2} \phi^{\ell, r}(x, y)=0 & \text { A.3.I } \\
\frac{\partial \phi^{i}, r}{\partial x}(0, y)=0 & y>-i+\varepsilon ; y<-1-\varepsilon & \text { A.3.2 } \\
\frac{\partial \phi^{2, r}}{\partial y}-\frac{\omega^{2} h}{Y} \phi^{\ell, r}(x, 0)=0 & \text { A.3.3 } \\
\begin{array}{ll}
\phi^{\ell}(x, y)-i e^{-K y} e^{-i K x}=e^{i K x} & x \rightarrow-\infty \\
\phi^{r}(x, y) \simeq e^{-i K x} & x \rightarrow+\infty
\end{array} & \text { A.3.4 } & \text { A.3.5 }
\end{array}
$$

Equations $A .3$ are valid to any order. Sy virtue of the linearity of tiese equations, all of tie $\%$ wations $\phi_{i}^{\hat{R}}$ and ϕ_{i}^{r},
$i=0,1, \ldots, N, s a t i s f y$ A. 3 . we nay simplify A. 3.2 by writing

$$
\frac{\partial \phi^{l, r}}{\partial x}(0, y)=0 \quad y \neq-1
$$

and noting that the approximation is valid to $O(\varepsilon)$.
The potentials ϕ^{ℓ} and ϕ^{r} are assumed valid only at distances far removed from the slit. Using dimensionless notation (Chapter II), and assuming linear theory, the asymptotic form of ϕ_{0}^{ℓ} or $x \rightarrow-\infty$ and the complete ϕ_{o}^{r} may be written immediately:

$$
\begin{array}{ll}
\phi_{0}^{\ell}(x, y)=2 i e^{k y} \cos k x & \text { A. } 4 \\
\phi_{0}^{r}(x, y)=0 & \text { A. } 5
\end{array}
$$

These are the solutions for a vertical barrier with no gap and no "breaking" at the point ($\left.0^{-}, 0\right)$. The introduction of a small gap at a finite depth introduces a perturbation as indicated by A.2. The representations A. 2 are called the "outer expansion" of the flow, and they represent the perturbed flow far from the slit (further than some radius δ). The perturioation potentials, ϕ_{1}, ϕ_{2}, etc., may thus be represented by multipole expansions at ($0,-1$). We will assume, and matching will show, that the correct perturbation is a simple source (or sink) placed at (0, -l). This will be shown to be valid to $0\left(\varepsilon^{2}\right)$.
we may thus write, tentatively,

$$
\begin{equation*}
\phi_{n}^{\ell, r}(x, y)= \pm A_{n}[\ell n r+H(\vec{r})] \tag{A. 6}
\end{equation*}
$$

where $\vec{r}=(x, y+1)$

$$
\begin{aligned}
& r^{2}=x^{2}+(y+1)^{2} \\
& H(\vec{r}) \text { is a regular function of } F \text {. }
\end{aligned}
$$

We take the source strength to be $+A_{n}$ on the left and $-A_{n}$ on the right, as must be the case from continuity. The value of A_{n} can only be found by matching the outer solution to an inner solution (Chapter III). The function inr $+\mathrm{H}(\vec{r})$ is ooviously simply the Green's function for a simple source at $(0,-1)$, thus $i(\vec{r})$ is known. The region of non-uniformity is determined by a radius δ_{n} within which the perturbation $a_{n} A_{n}$ lnr is no longer small. This implies

$$
\begin{equation*}
\delta_{n}=0\left(e^{-1 / \alpha_{n}}\right) \tag{A. 7}
\end{equation*}
$$

Inner Problem

We may proceed as in Chapter III to solve the inner provlem by stretcining coordinates.

$$
\begin{array}{ll}
\bar{x}=x / \varepsilon & A .8 .1 \\
\bar{y}=\frac{y^{+}+1}{\varepsilon} & \text { A. } 8.2
\end{array}
$$

We may represent the inner Elow as an asymptotic
expansion

$$
\psi(x, y, \varepsilon)=c+\beta_{1}(\varepsilon) \psi_{1}(x, y)+z_{2}(\varepsilon) \psi_{2}(x, y)+\ldots A .9
$$

where the β^{\prime} 's play the same role as the a's in $A .3$. As is usually the case, $\bar{\beta}_{\mathrm{n}}=\alpha_{\mathrm{n}}$ for this problem, but they will be designated separately since they are not necessarily equal. since the boundary conditions remain linear and independent of the order, we may write

$$
\begin{aligned}
& \psi_{n}(\bar{x}, \bar{y})=Q_{n} R_{e} \cosh ^{-i} \bar{z}+q_{n} \\
& \text { winere } \bar{z}=\bar{x}+i \bar{y}
\end{aligned}
$$

We have made use of the derivation of the flow through a slit in an infinite wall from Chapter III.

Matching

We shall find the values of A_{n}, Q_{n}, C and q_{n} through the application of Van Dyke's matching principle (Van Dyke, 1964, p. 89). Specifically, we will use the "asymptotic matching principle":

The m-tern inner expansion of (the n-term outer expansion) $=$ the n-term inner expansion of (the m-term outer expansion).

Tnis matching is accomplished by the following procedure:

1. Choose $m=n$ or $n+1$.
2. Write first n terms of the outer expansion (A.2) in terms of the inner variables (\bar{x}, \bar{y}).
3. Expand this for small ε, include first m terms of expansion.
4. Write first m terms of the inner expansion (A.9) in terms of the outer variables (s, y).
5. Expand this for small ε, include first n terns.
6. Convert both expansions (from steps 3 and 5) into the same coordinates.
7. Equate the two expansions and determine the unknowns.

Now, choose $m=2, n=1$, to get:

1. 2 term outer expansion:

$$
\begin{aligned}
& \left.:^{\alpha}=2 i e^{K y} \cos \pi x+\alpha_{1}(s) A_{1}[i n r+H i \vec{r})\right] \\
& \phi^{r}=-x_{1}(\varepsilon) \bar{A}_{1}[i n r+H(\vec{r})]
\end{aligned}
$$

2. Rewritten in inner variables:

$$
\begin{aligned}
& \phi^{\hat{\lambda}} \simeq 2 i e^{K(\bar{y} \varepsilon-h)} \operatorname{cosK\overline {x}\varepsilon +\alpha _{1}(\varepsilon)A_{1}[\dot {\sim }\varepsilon \overline {r}+iA(\varepsilon \vec {r})]} \\
& \phi^{r} \simeq-\alpha_{1}(\varepsilon) A_{1}[\hat{n} \varepsilon \bar{r}+H(\varepsilon \vec{r})]
\end{aligned}
$$

3. Expanä for small ε (keeping \bar{X}, \bar{Y} fixed) :

$$
\begin{aligned}
& \phi^{\ell} \simeq 2 i e^{-K h}+\alpha_{1} 1^{\ell n \varepsilon} \\
& \phi^{r} \simeq-\alpha_{1} A_{1} 2 n \varepsilon
\end{aligned}
$$

4. I term inner expansion:

$$
\dot{\psi}(\bar{x}, \bar{y}) \simeq c
$$

5. Rewrite in outer coordinates:

$$
\psi(x, y) \simeq c
$$

6. Expand for small $\varepsilon,(x, y)$ fixed:

$$
\psi(x, y) \simeq C
$$

In order to ontain a solution, we must set $\lambda_{1}(\varepsilon)$
$=0(1 / i n \varepsilon)$. Setting

$$
\alpha_{1}(\varepsilon)=1 / \operatorname{ine},
$$

we obtain, by equating the expressions obtained at step 3
to C :

$$
\begin{aligned}
2 i e^{-k h}+A_{I} & =C \\
-A_{1} & =C
\end{aligned}
$$

Thus, we obtain:

$$
\begin{equation*}
C=-\lambda_{i}=i e^{-k h} \tag{A. 11}
\end{equation*}
$$

To find higher order terms, repeat this procedure for, say, $m=3$, $n=2$, etc. ad nauseum. We will perform one more iteration here:

1. 3 term outer expansion:

$$
\begin{aligned}
& \phi^{\ell} \simeq 2 i e^{-k y} \cos k x-\frac{i e^{-k h}}{\ell n E}[\ell \operatorname{nn}+H(\vec{r})]+\alpha_{2} A_{2}[\ell \operatorname{nn}+1 i(\vec{r})] \\
& \phi^{r} \simeq \frac{i e^{-k h}}{\ell n c}[\ell \operatorname{nn} r+i i(\vec{r})]-\alpha_{2} A_{2}[\ell \operatorname{nr} r+H(\vec{r})]
\end{aligned}
$$

2. Rewrite in inner variables:

$$
\begin{aligned}
\phi^{\ell}=2 i e^{-k(\bar{y} \varepsilon-h)} \cos k \bar{x} \varepsilon- & \frac{i e^{-k h}}{\ell n \varepsilon}[\ell n(\bar{r} \varepsilon)+\dot{I}(\varepsilon \vec{r})] \\
& +\alpha_{2} A_{2}[\ell n \bar{r}+\mathrm{H}(\varepsilon \overrightarrow{\dot{r}})] \\
\phi^{r} \simeq & \frac{i e^{-k h}}{\ell n \varepsilon}[\ell n \bar{r}+H(\bar{r} \varepsilon)]-\alpha_{2} A_{2}[\ell n \bar{r}+\mathrm{H}(\varepsilon \vec{r})]
\end{aligned}
$$

3. Expand for small $\varepsilon,(\bar{x}, \bar{y}$ fixed $)$

$$
\begin{align*}
& \phi^{\ell} \simeq i e^{-k h}-\frac{i e^{k h}}{\ln \varepsilon}[\ell \ln \bar{r}+H(0)]+\alpha_{2} A_{2} \ln \varepsilon+0(\varepsilon) \\
& \text { A.12.1 } \tag{A. 12.2}\\
& \phi^{r} \simeq i e^{-k h}+\frac{i e^{-k h}}{\ln \varepsilon}[\ln \bar{r}+1 I(0)]-\alpha_{2} A_{2}^{\ell n \varepsilon}
\end{align*}
$$

4. 2 term inner expansion:

$$
\psi \simeq C+\beta_{1}\left\{Q_{1} R_{e} \cosh ^{-1} i \bar{z}+q_{I}\right\}
$$

5. Rewrite in outer variables:

$$
\psi \simeq c+\beta_{1}\left\{Q_{1} R_{e} \cosh ^{-1}(i z / \varepsilon)+q_{1}\right\}
$$

6. Expand for small ε (z fixed):

$$
\begin{aligned}
& \psi \simeq C+\beta_{1}\left\{ \pm Q_{1} \ln \frac{2 r}{\varepsilon}+q_{1}\right\} \\
& \quad("+" \text { for } x>0, "-" \text { for } x<0)
\end{aligned}
$$

7. 3 term outer expansion (of 2 term inner)

$$
\psi \simeq C \mp \beta_{1} Q_{1} \ln \epsilon \pm \beta_{1} Q_{1} \ln 2 r+\beta_{1} q_{1}
$$

If we now rewrite this in inner coordinates, we get:

$$
\begin{equation*}
\psi \simeq C \pm \beta_{1} Q_{1} \ln 2 \bar{r}+\beta_{1} q_{l} \tag{A. 13}
\end{equation*}
$$

First, comparing the $\ell n \bar{r}$ terms, which must match, we find:

$$
\beta_{1} Q_{1}=\frac{i e^{-k h}}{\ln \varepsilon},
$$

from which we deduce that $\beta_{1}=1 / 2 n e$ and $Q_{1}=-A_{1}=i e^{-k h}$. The next terms to match are of $0(1 / \mathrm{ln} \mathrm{n})$. In order for A .12 to match with A. , we must set $\alpha_{2}=(1 / l n \varepsilon)^{2}$ to obtain (setting $Q_{1}=-A_{1}$):

$$
\begin{aligned}
& -A_{1} \ln 2+q_{1}=-A_{1} H(0)-A_{2} \\
& +A_{1} \ln 2+q_{1}=A_{1} H(0)+A_{2}
\end{aligned}
$$

from which we deduce

$$
\begin{align*}
& q_{1}=0 \\
& A_{2}=A_{1}[\operatorname{n} 2-I(0)] \tag{A. 14}
\end{align*}
$$

Combining the results so far with A. 2 and $A .6$, we can write the outer expansion as

$$
\phi^{2} \simeq 2 i e^{-k y} \cos k x-i e^{-k h}[\ell n r+H(\vec{r})]\left\{\frac{1}{2 n \varepsilon}+\frac{i n 2-H(0)}{(\lambda n \varepsilon)^{2}}+\cdots\right\}
$$

$$
\text { A. } 15.1
$$

$$
\phi^{r} \cong i e^{-k h}[\ln r+H(\vec{r})\}\left\{-\frac{1}{\ln \varepsilon}+\frac{\ln 2-H(0)}{(\ln \varepsilon)^{2}}+\ldots\right\} \quad \text { A. } 15.2
$$

The above process cai of course be extended indefinitely, yielding in this case an asymptotic series in $(1 / \ell n \varepsilon)^{n}$ carried to an infinite number of terms. Actually, at some point the series should be truncated since the accuracy gained by adding a term of $(1 / \ell n \varepsilon)^{N}$ will, for finite values of ε, be less than that lost by ignoring $O(\varepsilon)$ terms. This happens when $N=-\ell n \varepsilon / \ell n|\ell n \varepsilon|$. Notice that N becomes infinite as $\varepsilon \rightarrow 0$.

Further terms in the above expansions may be adaed with increasing tedium.

Comparison with "Semi-Intuitive" Matching
It is much easier to find the solution to this problem directly by setting

$$
\begin{align*}
& \phi^{\ell}(x, y)=2 i e^{+k y} \cos k x+A(\varepsilon)[\ell \operatorname{nr}+H(\vec{r})] \tag{A. 16.1}\\
& \phi^{r}(x, y)=-A(\varepsilon)[\ell n r+H(\vec{r})] \tag{A. 16.2}
\end{align*}
$$

for the outer solution, and

$$
\begin{equation*}
\psi(x, y, \varepsilon)=P+Q(\varepsilon) \operatorname{Re} \cosh ^{-1}(i z / \varepsilon) \tag{A. 17}
\end{equation*}
$$

for the inner solution. These representations are of course valid to whatever order the particular form of the solutions is valid, since the same expressions could be derived by factoring the $[2 n r+H(\vec{r})]$ and the $\left[\operatorname{Re} \cosh ^{-1}(i \bar{z})\right]$ expressions from A. 2 and $A .9$ respectively. In particular, we see immediately that

$$
\begin{array}{rlr}
A(\varepsilon) & =\sum_{n=1}^{N} a_{n} A_{n} & A \cdot 18 \\
Q(\varepsilon) & =\sum_{n=1}^{N} n_{n}^{2} n & A \cdot 19 \\
P & =C+\sum_{n=1}^{N} 3_{n} G_{n} & A \cdot 20
\end{array}
$$

and

To show the equivalence of the two forms of matching, we need only set the outer limit of the inner solution (A.l7) equal to the inner limit of the outer solution (A.26) to obtain (setting $A=-Q$ for continuity)

$$
\begin{aligned}
2 i e^{-k h}+A[\ln r+H(0)] & =P+A \ln (2 r / E) & A \cdot 21.1 \\
-A[\ln r+H(0)] & =P-A \ln (2 r / E) & A .21 .2
\end{aligned}
$$

which yields

$$
\begin{array}{ll}
P=i e^{-k h} & A .22 \\
A=\frac{i e^{-k h}}{\ln 2-H(0)-\ln \varepsilon} & \text { A. } 23
\end{array}
$$

Expanding $A(\varepsilon)$ in powers of (l/̂n $)$ yields
$A(\varepsilon)=\frac{1}{\lambda n \varepsilon}\left[\frac{-i e^{-k h}}{1-\frac{2 n 2-n(0)}{i n \varepsilon}}\right] \simeq-\frac{i e^{-k h}}{i n \varepsilon}\left[1+\frac{i n 2-H(0)}{i n \varepsilon}+\cdots\right]$

$$
\text { A. } 24
$$

Comparing A. 15 and A. 16 using A. 24 shows that botn matching procedures do indeed yield the same result.

GREEN'S FUNCTION

The Green's function is the potential of a source at (ξ, n) which satisfies the free surface condition, the bottom boundary condition, and the radiation conditions at $x= \pm \infty$. If this function is $G(x, y \mid \xi, \eta)$, when the time dependence has been superseded as in Chapter II, then

$$
\begin{array}{ll}
\nabla^{2} G(x, y \mid \xi, \eta)=-2 \pi \delta(x-\xi) \delta(y-\eta) & \text { B. } 1 \\
(v-\partial / \partial y) G(x, D \mid \xi, \eta)=0 & \text { B. } 2 \\
\frac{G(x, 0 \mid \xi, \eta)}{\partial y}=0 & \text { B. } 3 \\
G \simeq e^{+i K x} \quad x \rightarrow \pm \infty & \text { B. } 4 \\
\text { where } v=\omega^{2} / g &
\end{array}
$$

The equations have been written in dimensional form. These equations have Deen solved by numerous authors. Thorne (1953) writes $G(x, y \mid \xi, \eta)$ in the form

$$
\begin{gathered}
G(x, y \mid \xi, \eta)=\ln \left(r / r^{\prime}\right)+\phi_{1}(x, y \mid \xi, \eta)+i \phi_{C}(x, y \mid \xi, \eta) \\
\text { where } r^{2}=(x-\xi)^{2}+(y-\eta)^{2} \\
r^{\prime 2}=(x-\xi)^{2}+(y+\eta-2 D)^{2}
\end{gathered}
$$

He then solves for ϕ_{1} by writing

$$
\begin{aligned}
& \phi_{1}(x, y \mid \xi, \eta)=\int_{0}^{\infty}\left[f_{1}(\xi, \eta, k) \text { sinh } k y\right. \\
& \left.+f_{2}(\xi, \eta, k) \cosh k(D-y)\right] \cos k x d k
\end{aligned}
$$

and selecting f_{1} and f_{2} so that the boundary conditions B. 2 and B. 3 are satisfied. ϕ_{2} is selected so the radiation conditions are satisfied.

Wehausen and Laitone solve the same problem using the complex potential function, and Mei (1969) finds the Green's function by Fourier transform techniques. Only the results will be presented here.

As given by Thorne, and with a substitution indicated by Wehausen*, the functions ϕ_{1} and ϕ_{2} may be written
$\phi_{1}(x, y \mid \xi, \eta)=-2 \ell n D$

$$
-2 \oint_{0}^{\infty}\left\{\frac{k+}{k} \frac{e^{-k D} \cosh k(D+\eta) \cosh k(D+y) \cos k(x-\xi)}{k \sinh k D-v \cosh k D}\right.
$$

$$
\left.+\frac{e^{-k D}}{k}\right\} \quad d k
$$

$\phi_{2}(x, y \mid \xi, n)=\frac{K^{2}-v^{2}}{K\left(K^{2} D-v^{2} D+v\right)} \cosh K(D+n) \cosh K(D+y) \cos K(x-\xi)$

The asymptotic form may be written
$\lim _{x \rightarrow+\infty} G(x, Y \mid \xi, \eta)=\frac{2 \pi\left(K^{2}-v^{2}\right)}{K\left(K^{2} D-v^{2} D+v\right)} \cosh K(D+y) \cosh K(D+\xi) e^{i K|x-\xi|-i \pi / 2}$
The value of the integral for 1 is computed by taking (numerically) the limit
*Wehausen introduces the identity

$$
\frac{e^{-K D} \sinh K D}{v D+\sinh ^{2} K D}=\frac{K-v}{K^{2} D-v^{2} D+}
$$

$$
\oint_{0}^{\infty} \frac{f(k) d k}{k \sinh k D-v \cosh k D} \simeq \lim _{\Delta \rightarrow 0}\left\{\int_{0}^{K-\Delta}() d k+\int_{K-\Delta}^{\infty}() d k\right\}
$$

for each set of values $(x, y \mid \xi, n)$ on the cylinder.

APPENDIX C

 ASYMPTOTIC LIMITS OF $\cosh ^{-1} \mathrm{iZ}$The solution to the inner problem was obtained in Chapter III by performing a conformal mapping:

$$
z=-i \cosh \zeta
$$

$$
\text { III. } 21
$$

$$
\text { where } z=(x+l) / \varepsilon+i y / \varepsilon
$$

This mapping is illustrated in Figures III.3.4. The asymptotic limits may be taken, for the left side of the gap,

$$
\lim _{\substack{\xi \rightarrow-\infty \\ 0<\eta<\pi}} z=\frac{-i e^{-(\xi+i \eta)}}{2} \quad \text { C.I }
$$

and, for the right side of the gap,

$$
\begin{equation*}
\lim _{\substack{\xi \rightarrow+\infty \\ 0<\pi<\pi}} z=\frac{-i e^{(\xi+i n)}}{2} \quad \text { c.2 } \tag{C. 2}
\end{equation*}
$$

Thus, we may take the mapping in the two limits to be:

$$
\begin{array}{ll}
\zeta=-\ln 2 i z & \text { (left side) } \\
\zeta=\ln 2 i z & (\text { right side })
\end{array}
$$

which yields the complex velocity potential from equation III. 22 ,

$$
W(z) \rightarrow \pm \cup \ln 2 i z+c,
$$

which yields the asymptotic form of the velocity potential when only the real part is taken, i.e.,

$$
\phi(X, Y)= \pm U \ln 2|z|+C .
$$

This "outer limit" has been utilized in Chapter IV for the matching.

APPENDIX D

NUMERICAL FILTERING OF DATA

If we desire to low pass filter a time function, $x(t)$, we must pass it through a linear system with the following transfer function

$$
\begin{array}{ll}
H(\omega)=1.0 & -\omega_{c}<\omega<\omega_{c} \\
H(\omega)=0.0 & |\omega|>\omega_{c}
\end{array}
$$

In this manner, if $X(\omega)$ is the Fourier transform of $x(t)$ (cf. Davenport and Root)

$$
x(\omega)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} x(t) e^{-i \omega t} d t \quad \quad D .1
$$

The Fourier transform of the output, $y(t)$, will be

$$
Y(\omega)=H(\omega) X(\omega), \quad \text { D. } 2
$$

so that $y(t)$ will be $x(t)$ with frequencies of $|\omega|>\omega_{c}$ removed.
$y(t)$ may be found by taking the inverse Fourier transform of D. 2

$$
\mathrm{y}(\mathrm{t})=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} \mathrm{H}(\omega) \mathrm{X}(\omega) \mathrm{e}^{i \omega t} \mathrm{~d} \omega
$$

$$
\text { D. } 3
$$

Noting that

$$
H(\omega)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} h(t) e^{-i \omega t} d t \text {, }
$$

write

$$
\begin{aligned}
y(t) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} d Z^{\prime} 1\left(t^{\prime}\right) \int_{-\infty}^{\infty} d \omega X(\omega) e^{i \omega\left(t-t^{\prime}\right)} \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \because\left(t^{\prime}\right) x\left(t-t^{\prime}\right) d t^{\prime}
\end{aligned}
$$

Equation D. 1 is the familiar convolution integral (cf. Blackman and Tuckey, p. 72). Equation D. 4 is helpful in our case since we may find the filtered function, $y(t)$,
 do this, we must determine $h(t)$:

$$
\begin{aligned}
h(t) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} H(\omega) e^{i \omega t} d \omega \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\omega_{c}}^{\omega} e^{i \omega t} d \omega \\
& =\sqrt{\frac{2}{\pi}} \frac{\sin \omega_{c} t}{t}
\end{aligned}
$$

Equation D. 4 may now be written

E infinite
ad by one over
\geq taken over
se only in-
っd, we will cã-
the record
sord. If the

$$
y(t)=\frac{1}{\pi} \int_{-\infty}^{+\infty} x\left(t-t^{\prime}\right) \frac{\sin \omega_{c}^{t^{\prime}}}{t^{\prime}}
$$

D. 6

Since we cannot obtain a wave record length, the above integral must be approxim a finite time period. The actual records several (at least 5) wave cycles. Since we terested in the filtered values over one pe culate $y(t)$ for $t ' s$ lying within a length o representing no more than $1 / 5$ of the total
total sample time is T_{5} (sec.), the punched data will consist of $250 \mathrm{~T}_{\mathrm{s}}$ points for each of seven channels of information (for a sample rate of 250 Hz.). The point $t-T / 2$ may arbitrarily be selected to correspond to the lth point of the data, $\ell=125 \mathrm{~T}_{\mathrm{s}}$, so that $\mathrm{t}=\mathrm{T} / 2$ lies in the midale of the recorded data. The points $t=0$ and $t=T$ will thus lie an equal number of points to each side of the midpoint. The situation is shown graphically in Figure D.1.

yration over a finite time,
In order that the i:

the limits of the
$\mathrm{P} / 2$ - M , where M is a
hash that might
would not require values of $x(t)$ beyor record length, we must select $\mathrm{T}_{0}=\mathrm{T}_{\mathrm{s}}$ buffer to protect us from picking up \bar{a}
exist at the ends of the record. M is typically selected to equal 50.

Now, selecting the ca points so that

$$
Y_{i}\left(t_{j}\right)=Y_{i j}=Y_{\ell+j}
$$

where $y_{i}\left(t_{j}\right)$ is the signal for channel i
at time $t=t_{j}$

$$
t_{j}=(j-1) \Delta \tau
$$

$$
\Delta \tau=T / \mathrm{N}
$$

$$
\mathrm{N}=\text { number of points to be }
$$ calculated for one cycle

and letting $t_{j}=t-t^{\prime}$ in we may write

$$
y\left(t_{i}\right)=\frac{1}{\pi} \int_{t_{i}-T_{0}}^{t_{i}^{+T}} x\left(t_{j}\right) \frac{\sin \omega_{c}\left(t_{j}-t_{i}\right)}{t_{j}-t_{i}} d t_{j}
$$

This may be written in numerical form

$$
\left.\begin{array}{rl}
Y_{i} & =\Delta \tau \tag{D. 8}\\
\text { where } A_{k} & =\frac{1}{\pi} \frac{\sum_{i-N_{o}}^{i+N} x_{j} A_{k}}{\sin \omega_{c}\left(t_{j}-t_{i}\right)} \\
t_{j}-t_{i}
\end{array}\right]=\frac{1}{\pi} \frac{\sin k_{c} \Delta \tau}{k \Delta \tau} .
$$

Program DATA reads the cards punched on the IBM 1130 and applies the filter D. 8 to all channels prior to Fourier analysis.

APPENDIX E

RADIATION FROM AN OS ILLLATING CYLINDER

The solution for an ascillating cylinder in calm water is of interest because the damping coefficient may be directly related to the magnitude (but not the phase) of the force coefficient by means of the Haskind relations (see Newman,
 damping coefficients, are readily computed by the same pro gram used to compute the wave forces with minor alterat.or These computations serve two purposes. First, a comparisc of the computed added mass coefficients with those measur in the cylinder vibration studies (Table provides a alternate means of comparing the linear theory with exper ment. Secondly, by computing the wave force coefficint or via direct computation, and once via the Haskind relations using computed damping coefficients, the reliability of th computer program may be checked since the Haskind relatior holds only between the exact linear damping coefficient ar the exact wave force coefficient.

The formulation of this problem follows closely that - the wave force problem. We will again denote the potenti outside the cylinder by $\bar{\phi}(\vec{r})$, that inside by $\tilde{\phi}(\vec{r})$, and th "inner" gap potential by $\hat{\phi}(\vec{r})$.

The cylinder will be assumed oscillating in the hori zontal plane with a velocity

$$
U(t)=U_{0} \cos \omega t .
$$

$$
\text { E. } 1
$$

The fluid is assumed incompressible and the motion irrotational.
E. 1 The Outside Region
$\bar{\phi}(\vec{r})$ then satisfies the following conditions:

$$
\begin{array}{cc}
\nabla^{2} \bar{\phi}(\vec{r})=0 & \text { E. 2.1 } \\
\bar{\phi}_{y}(x, D)-\frac{\omega^{2} R}{g} \bar{\phi}(x, D)=0 & \text { E. } 2.2 \\
\bar{\phi}_{y}(x, 0)=0 \quad|x|>1 & \text { E. } 2.3 \\
\bar{\phi}_{n}\left(x_{s}, y_{s}\right)=U \cos \theta & \text { E. } 2.4 \\
\text { where } x_{s}^{2}+y_{s}^{2}=1 & \\
\theta=\tan ^{-1}\left(x_{s} / Y_{s}\right) &
\end{array}
$$

In addition, $\bar{\phi}(x, y)$ satisfies the radiation condition at $|x| \rightarrow \infty$.

We will again write $\bar{\phi}(\vec{r})$ as a first order term plus a source and a sink perturbation term to account for the gap. Ne will introduce the same non-uniformities as before and will solve by matching the solutions near each gap.

Let

$$
\begin{align*}
\Phi(\vec{r}) & =\bar{\phi}_{O}(\vec{r})+Q(\varepsilon) \bar{\phi}_{I}(\vec{r}) \tag{E. 3.1}\\
\Phi_{1}(r) & =\ln \left(r_{L} / r_{R}\right)+H(\vec{r}) \tag{E. 3.2}
\end{align*}
$$

The conditions on $\bar{\Phi}_{1}$ and $\bar{\Phi}_{2}$ are the same with the
exception of the boundary condition on the cylinder.

$$
\begin{array}{ll}
\bar{\phi}_{1 n}\left(x_{5}-{ }_{s}\right)=U \cos \theta & E .4 . I \\
\bar{\phi}_{2 n}\left(i_{s}, Y_{s}\right)=0 & \text { E. } 4.2
\end{array}
$$

We can see immediately that $H(\vec{r})$ is identical to $H(\vec{r})$ in eqn. for the wave force calculation.

The first order outside potential, $\bar{\phi}_{1}$, may be found numerically by the same integral equation as was $\phi_{\text {so }}(\vec{r})$ for the wave force, namely

$$
\begin{aligned}
\bar{\phi}_{1}\left(x_{s}, Y_{S}\right)= & -\frac{1}{\pi} \int \bar{\phi}_{1}(\xi, \eta) \frac{\partial G}{\partial n}\left(x_{s} y_{s} \mid \xi, \eta\right) d \ell \\
& +\frac{1}{\pi} \int G\left(x_{s}, y_{s} \mid \xi, \eta\right) \frac{\partial \bar{\phi}_{1}}{\partial n}\left(x_{s} y_{s}\right) d \ell \\
= & -\frac{1}{\pi} \int \Phi_{1} \frac{\partial G}{\partial n} d \ell+\frac{U}{\pi} \int G \cos \theta d \ell
\end{aligned}
$$

where the integrations are taken over the cylinder's surface as before. E .5 may be solved numerically by the same program used to compute $\phi_{S O}(\vec{r})$ by simply making the substitution

$$
\begin{equation*}
\frac{\partial \phi_{i}}{\partial \mathrm{n}}=\mathrm{U} \cos \theta \tag{E. 6}
\end{equation*}
$$

in the program, i.e., by using the oscillating velocities rather than the incident wave velocities.
 write as before:

$$
\begin{array}{ll}
\bar{\phi}_{0}(1,0)=\bar{\phi}_{\mathrm{OR}} & \mathrm{E} .7 .1 \\
\bar{\phi}_{\mathrm{O}}(-1,0)=\bar{\phi}_{\mathrm{OL}} & \mathrm{E} .7 .2
\end{array}
$$

$$
\begin{array}{ll}
H(1,0)=H_{R} & E .7 .3 \\
H(-1,0)=H_{L} & E .7 .1
\end{array}
$$

E. 2 The Inside Region

The conditions to be satisfied by $\phi(r)$ are simplified by the absence of a free surface.

$$
\begin{array}{rlrl}
\nabla^{2} \tilde{\phi}(\vec{r}) & =0 & E .8 .1 \\
\tilde{\phi}_{Y}(x, 0) & =0 & \text { E.8.2 } \\
\tilde{\phi}_{n}\left(x_{s}, y_{S}\right) & =U \cos \theta & E .8 .3
\end{array}
$$

The potential which satisfies these conditions is the same as that for a fixed cylinder with an added term to satisfy E.8.2:

$$
\begin{equation*}
\tilde{\phi}(\vec{r})=B(\varepsilon)+U x+Q(\varepsilon) \ln \left(r_{R} / r_{L}\right) \tag{E. 9}
\end{equation*}
$$

E. 3 The Inner Solution

The inner solution, like the inside solution, remains the same as before with the addition of a term to account for the motion of the cylinder wall. Thus we may write

$$
\begin{aligned}
& \hat{\phi}_{L}\left(X_{L}, Y_{L}\right)=C_{L}+Q\left(f \quad \operatorname{Re}\left\{\cosh ^{-1}\left(i Z_{L}\right)\right\}+U x \quad E .10 .1\right. \\
& \hat{\phi}_{R}\left\{X_{R}, Y_{R}\right)=C_{R}+Q(\varepsilon) \operatorname{Re}\left\{\cosh ^{-1}\left(i Z_{R}\right)\right\}+U X \quad E .10 .2
\end{aligned}
$$

where the inner variables are again defined as

$$
\begin{aligned}
X_{L} & =(x+1) / \varepsilon \\
Y_{L} & =y / \varepsilon \\
X_{R} & =(x-1) / \varepsilon \\
Y_{R} & =y / \varepsilon
\end{aligned}
$$

The term Ux is written in outer coordinates since matching will be carried out in that system.
E. 4

The outer limits of the inner solutions may be written as follows:

$$
\begin{aligned}
& \lim _{\varepsilon \rightarrow 0} \hat{\Phi}_{I}\left(X_{L}, Y_{L}\right)=C_{L} \pm Q(\varepsilon) \ln \left(2 r_{L} / \varepsilon\right) \quad E . l l .1 \\
& X_{L}, Y_{L} \text { fixed } \\
& \mathrm{x} \text { §0 } \\
& \lim _{\varepsilon \rightarrow 0} \hat{\phi}_{R}\left(X_{R} \cdot Y_{R}\right)=C_{R} \pm Q(\varepsilon) \ln \left(2 r_{R} / \varepsilon\right) \\
& \mathrm{X}_{\mathrm{R}}, \mathrm{Y}_{\mathrm{R}} \text { fixed } \\
& \mathrm{x} \leqslant 0 \\
& \text { where } r_{L}=\sqrt{(x+1)^{2}+y^{2}} \\
& r_{R}=\sqrt{(x-1)^{2}+y^{2}}
\end{aligned}
$$

The inner limits of the outer solutions may be taken as

$$
\lim _{\substack{\vec{r} \rightarrow(-1,0)}} \bar{\phi}(\vec{r})=\bar{\phi}_{O L}+Q\left[\ell n r_{L}-\ell n_{2}+H_{L}\right] \quad E .12 .1
$$

$$
\lim _{\vec{r} \rightarrow(1,0)} \bar{\phi}(\vec{r})=\bar{\phi}_{O R}+Q\left[\ln 2-\ln r_{R}+H_{R}\right] \quad E .12 .2
$$

$$
\lim \quad \tilde{\phi}(\vec{r})=B-U+Q\left(\ln 2-\ell n r_{L}\right) \quad E .13 .1
$$

$$
\vec{r}+(-1,0)
$$

$$
\lim \quad \tilde{\phi}(\vec{r})=B+U+Q\left(\ell n r_{R}-\ln 2\right)
$$

$$
\text { E.13. } 2
$$

$$
\vec{r} \rightarrow(1,0)
$$

We may now find the source strength by writing the total circulation in terms of the potential differences across each region (i.e., the method presented in Section The equation for the circulation becomes

$$
\begin{aligned}
& \phi_{O L}+Q\left[\ell n r_{L}-\ln 2+H_{L}\right]-\phi_{O R}-Q\left[\ln 2-\ln r_{R}+H_{R}\right] \\
& +C_{L}-Q\left[\ln 2+\ln r_{L}-\ln E\right]-C_{L}-Q\left[\ln 2+\ln r_{L}-\ln E\right] \\
& +B+U+Q\left[\ln r_{R}-\ln 2\right]-B+U-Q\left[\ln 2-\ell n r_{L}\right] \\
& \pm C_{R}-Q\left[\ln 2+\ln r_{R}-\ln \varepsilon\right]-C_{R}-Q\left[\ln 2+\ell n r_{R}-\ln \varepsilon\right] \\
& =0
\end{aligned}
$$

Cancelling terms in E. 14 and solving for 9 yields

$$
\begin{equation*}
Q=\frac{\bar{\phi}_{\mathrm{OR}}-\Phi_{\mathrm{OL}}-2 \mathrm{U}}{\mathrm{H}_{\mathrm{L}}-\frac{\mathrm{H}_{\mathrm{R}}}{}-\frac{8 \ln 2+4 \ln \varepsilon}{4}} \tag{E. 15}
\end{equation*}
$$

E. 5 Matching

$$
\text { Using E. } 15 \text { instead of }
$$

in program MAIN yields the forces per unit velocity（setting $U=1.0$ ）on a cylinder oscillating in the horizontal plane． If we write these forces as

$$
F=f_{1}+i f_{2}
$$

we can identify f_{1} with the damping coefficient of the cylinder and f_{2} with its added mass．In particular，if f_{1} and f_{2} are in units of lbs．force per foot per second velocity，we may write the damping coefficient and the added mass respectively

$$
\begin{align*}
& \mathrm{B}_{11}=\mathrm{f}_{1} \tag{E. 16.1}\\
& \mathrm{~A}_{11}=\mathrm{f}_{2} / \omega \tag{E. 16.2}
\end{align*}
$$

Haskind＇s relation for horizontal wave force may be written（Newman，1962）

$$
\begin{equation*}
\left|F_{H}\right|=a \sqrt{\rho g^{2} / \omega{ }^{B} 11} \tag{E. 17}
\end{equation*}
$$

This may be written in terms of the Morison mass co－ efficient C_{M} as

$$
\begin{equation*}
\left|C_{M}\right|=\frac{2 F_{H} \cosh K D}{\rho g \pi R^{2} \mathrm{Ka}}=\frac{2 \cosh K D}{\rho g \pi \mathrm{KR}^{2}} \sqrt{\frac{\rho ⿴ 囗 ⿱ 一 一 ~_{2}^{2}}{\omega} B_{11}} \tag{E. 18}
\end{equation*}
$$

Table E．l shows values of C_{M} computed by the two methods． The column marked C_{M} presents values computed via the wave scattering program；the column marked C_{M}＇shows values com－ puted via the radiation solution and Haskind＇s relations．

$\overline{\mathrm{KD}}$	$\overline{\mathrm{R} / \mathrm{D}}$	$\bar{\varepsilon}$		$\overline{C_{M}}$
.873	.50	0.0	2.013	$\overline{C_{M}}$
.873	.50	.01	1.935	
6.817	.50	0.0	1.582	1.351
6.817	.50	.01	1.740	1.712

TABLE E. 1

The difference between C_{M} and C_{M} ' is due entirely to numerical errors. These results indicate, therefore, the relative accuracy of the computer program used for calculating wave forces.

Appendices F, G and H have been omitted from this report. They may be found in the original Thesis or obtained from the author. Contact the Department of Ocean Engineering, M.I.T., Cambridge, Massachusetts 02139

[^0]: are listed in alphabetical order by the first 1 , and by the year of publication for different ? same author, in the Bibliography.

[^1]: *Referenct author ci works by

[^2]: *The proof of the unigueness of the solution derived via Green's theorem is given in any book on partial differential equations (e.g., Garabedian). It sitould be noticed that the uniqueness property does not pertain to the eigen functions characterized by the singularities at the edges of the cylinder. The elimination of higher order singularities rests on energy arguments and on Van Dyke's "principle of least singularity".

[^3]:

 ー $=$

