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WAVE FORCES ON A SUBMERGED OBJECT

by

John E, Halkyard

Abstract

An experimental and theoretical investigation is con-
ducted into the nature of the wave motion past {(and under) a
semi~circular cylinder suspended a short distance above the
sea bottom. Particular attention is drawn to the flow
through the gaps at the cylinder's edges.

The flow is represented by replacing the gaps by a fluid
source and a fluid sink respectively. The strength of the
source and sink is found by a semi-intuitive matched asymp-
totic expansion scheme. The pressures both inside and out-
side the cylinder are computed and the resulting forces

plotted.

A significant reduction in the horizontal force is
noted for very small gap widths. This result is supported by
force measurements in the wave tank, as is the discovery that
the vertical force is largely affected by a first order con-
stant pressure acting inside the cylinder.

Reflection coefficients measured in the tank showed less
correlation to the theory, mostly due to sensitivity to beach
reflected waves.

The extension of this theory to three-dimensional
objects is discussed, and a comparison is made with other
investigators' data.
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I. INTRODUCTION

18,

Recent discovery and subsequent production of oil fields

.. far offshore has spurred considerable interest in

site storage and loading of crude oil as an alternative

lizing long pipelines. The economic savings in both

1 expenditures and operating costs introduced by
ing structures for the submerged storage of oil have
iscussed by Chamberlin (1969)*. The Chicago Bridge and
instéliéd'iﬁe'fﬁféﬁfgﬁbmérgéd*dIIfoGrage Lana - T
n Gulf in August, 1969. This tank consists of

steel structure approximately 250 feet in

75 feet high. A 30-foot diameter riser pene-

ce surface. The tank has a capacity of 500,000

ude oil (about 75,000 tons), and sits in 156
.. The tank operates on a water displacement
t is free flooding through ducts and openings

e ringwall so that as oil is pumped down the

e tank water passes out the bottom.

.1 shows schematically the operation of the

submerged oil storage design has been tested at

: stage (see Itokawa, 1969). This model was con-

| a hemispherical cap of flexible material and

Te listed in alphabetical order by the first
1, and by the year of publication for different
» same author, in the Bibliography.

-
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a steel ellipsoidal base and was capable of holding up to

10,000 gallons,

age, large

le cities

1allenges in

>f maximum

ves. The
3 are
cing and

and "Science
Llable from
st 1s the

, Navy,"
IVY .

pipeline from well

Figure I.1
MAMMIAEEN RN 1B R&E&MATIE URAWING Ok SUBMERGEINm |
I OIL STORAGE TANK (CB&I)mm

In addition to their obvious use in oil st
underwater structures have been studied as poss

of the future.?*

Naturally, one of the greatest engineering
the design of these structures is the predictic
design loadings under the influence of surface

problems related to the prediction of these for

*See, e.g., Commission on Marine Science, Engin
Resources, "Our Nation and the Sea," Jan. 1969
and Environment," Vols. 1-3, Feb. 1969, both a
the Superintendent of Documents. Also of inte
report "The Ocean Engineering Program of the U
Sept. 1967, Office of the Oceanographer of the
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complicated by the fact that the structures are large com-=
pared with the wave lengths encountered so that significant
scattering of the waves takes place. Traditional civil
engineering methods for calculating forces on piles and other

small objects in the coastal zone are no longer sufficient.

This realization has slowly crept into the engineering
community as witnessed by the proliferation of studies into

the forces on submerged objects in recent years.

1.1 The Problem of Exciting Forces

In many ways, the probléms associated with wave inter-
action with large submerged objects are the same as those
which have been under study for years by naval architects in
connection with the exciting forces on ships and other

floating objects.

Haskind (1957) derived in exact (within linear theory)
relationship between the exciting (wave) forces on an object
and its damping coefficient in harmonic motion thus leading
to a simplification in most cases of the work involved in
calculating the forces. Earlier work by Havelock (19553},
Ursell (1950) and others provided theories for the damping
coefficients and added mass of simple gecometries, both
floating and submerged, which could subsequently be utilized

to compute wave forces via Haskind's relations.

Newman (1960) utilized Haskind's relations to find the

exciting forces on a submerged ellipsoid (in three dimensions)}
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and an ellipse (in two dimensions).

I.2 Survey of the Methods

The methods used in the calculation of wave forces (or
the added mass and damping in the case of radiation} wvary in
their numerical complexity and in the information which they
yield. Usually the complexity increases as more information

is desired.

I.2.1 Matching Polynomial Coefficients

Ursell's method (Ursell, 1950) has been the most popu-
lar approach until recently. This method involves the fol-
lowing procedure: describe the flow by a polynomial expan-

sion, including a spurce term, about the origin plus a

radiated wave of unknown amplitude. Divide the object into a

finite number of grids, N, and write the boundary condition
on each of the grids in terms of the polynomial expansion.
The eguations may then be solved algebraically for the
unknown polynomial coefficients if the solution is approxi-
mated by a polynomial of degree N-1. This method leads to a
near field solution for the flow to any degree of approxima-
tion desired, depending only on the number of grid points

taken.
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numerical solution of the integral equation has been widely
used in the prediction of loads on airfoils (see, e€.9.,
Ashely, 1966), but the complexity of the Green's function

with the inclusion of free surface effects has discouraged

its use in water wave problems. Recent advances in computer

design and performance have largely reduced the difficulties,

however, and this approach offers many practical advantages

tbﬂ-frqﬂ‘rerﬁn? TUNER,

...................................... i

il

i ac ]'_n'g"'

Mhe galaddan ko the _integral

I ”l”””hHl{ﬂt LULHMMUHM||Lgui|my|u “

be written to account for a wide variety of general shapes,

and may even be incorporated in a general design program to

calculate tradeoffs for various shapes, depths, etc.

Kim (1962) used the integral egquation method to find

the damping and added mass coefficients of reolling or heaving

disk in the free surface. The forces on submerged three-

dimensional objects have been calculated by Milgram and

Halkyard (1971) and Garrison, et al (1970). Garrison

in

2AAi+inn narfarmed spome expgriments on a submerged dome. Mei

weak reflection of waves by a bottom

oximate solution to the Fredholm

Method

msiderably more finesse than either of

methods is the variational method.

T EAMANa s e A TR S T IR G
e -

{1969) calculated t
obstacle using an a

integral equation.

I.2.3 The Variation

A scheme with

the previously stat
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This method has been utilized extensively in electro-~
magnetic theory (see, e.g., Collin, 1960, Chapter 8), and
has been applied to scattering and radiation of surface
waves by Miles (1967), Black et al (1971), and Miles and
Gilbert (1969) among others. The variational approach
allows the computation of radiated waves {and thus the
exciting forces via Haskind's relations) with greatly
reduced numerical effort. This method does not, however,
yield the near field flow conditions. For engineering pur-
poses, the net forces computed by such a scheme may be
helpful in foundation design, but the distribution of
pressures is essential information for structural consid-
erations. Either of the previous methods would be prefer-

able from this point of view.

A complete discussion of scattering, or diffraction, of
ocean waves is beyond the scope of this thesis. A general
and thorough discussion of wave interactions may be found
in Wehausan and Laitone (1960), and an up-to-date review of

the literature is given by Newman (1971).

I.2.4 Qther Approaches

Running a parallel, though seemingly unassociated,
course with the investigations mentioned above, which were
mainly associated with naval architectural problems, was
the "coastal engineering" approach. This approach was
initially developed for the determinations of wave loads on

vertical piles such as those used as dock supports and as
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structural members in the “Texas Tower" type 0il rigs. An
extensive dependence on empirical observation, plus the com-
bined conclusions of hydrodynamicists back to the studies of
pendulums in a viscous fluid by G. G. Stokes in 1851, led
Morison and his co-investigators {(Morison, et al, 1950) to
the conclusion that the total force on an ocean structure
could be divided into two components: a drag force and an
inertial force. This conclusion gives rise to the well known
"Morison egquation" which has been almost universally adopted

by the coastal engineering community:

F = Fy+ Fy = %—CDpApu|u| + CyPF %—‘% I.1
where
F = total force on an object in the direction of u
FD = drag force
Fy = inertial force
CD = drag coefficient

p = mass density of fluid (sea water = 2.0)

A = area of object projected on plane perpendicular
P to the direction of flow

u = velocity of fluid

C.. = inertial coefficient
V = submerged volume of the object

A great deal of study has been done on the forces on

submerged objects under the assumption that the Morison
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equation correctly accounted for the forces. O'Brien and
Morison (1952), and more recently Grace and Cascianc (1969)
have correlated CM and CD to experimental observations of
forces on small submerged spheres. Extensive measurements
and further correlation of CM and CD for vertical piling was .
carried out by Wiegal, Beebe and Moon (1957). Their tests,
conducted in an open ocean environment, showed considerable
scatter of data (see Figures 1.2 and I.3) which was subse-
guently explained and corrected by Borgman (1967) through a

spectral analysis of the wave records.

Considerably better correlation of C andCD with

M
experiment was obtained by Keulegan and Carpenter (1958)
under laboratory conditions, and with the allowance that CM
and CD may vary over a wave cycle. A detailed discussion of
their approach is included in Chapter VI of this thesis.

Other tests have been undertaken. Wiegel (1964) offers
an extensive survey of these tests and some of the theoret-

ical advances.

Since the Morison formula was originally introduced as a
device to predict wave forces on small diameter piles, its
acceptability for objects which exhibited scattering was not
well understood until subsequent developments, some of which
were mentioned above. In particular, MacCamy and Fuchs
(1954) calculated the effect of diffraction of piles and con-

cluded that diffraction not only affected the magnitude of
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CM’ but that the phase of the inertial force must also be
altered if diffraction is to be taken into account. This
result led to later generalizations of the Morison equation,

such as that used by Motora and Koyama (1966):

_ au
F=ky 5 + kouju| + kju I.2

where kl, k2 and k3 are coefficients to be determined

either experimentally or theoretically.

This equation certainly has more appeal for large ocean
structures. A simplification of the equation is made for the
case of large structures by observing that, for_all but the
largest waves, the drag forces are of a second order to the

inertial forces.

In this thesis Morison's equation is introduced in a
modified form allowing Cy to take on complex values to
account for the phase shift. The magnitude of CM then pro-

vides a non-dimensional horizontal force measurement as well

as a coefficient for engineering comparison.

I.3 Recent Work on Large Submerged Objects

The advent of large submerged objects in the sea has
brought the theoretical approaches of the naval architects
into the field of coastal or "ocean" engineering. Recent
diffraction studies, primarily those of Milgram and Halkyard
{1971) and Rao and Garrison (1970) have been motivated by the

Chicago Bridge and Iron Company's oil storage tank, as have
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been the experimental studies of Herbich and Shank (1970).
This author's work has been largely sponsored by that com-
pany, while, needless to say, many proprietary studies have

been conducted by various concerns.

There is yet to appear a comprehensive theory to take
into account all the factors influencing the force on these
types of structures. Even if we restrict ourselves to linear
theory (where everything is proportional to the wave height)

the following questions have not been satisfactorily answered:

1. what effect does structural deflection have

on the total locads?

T TNes OLaywalioo - . BT - -:ﬁ RIS S l:-—_l_n-... .
- SRR ' 5. How much” energy is transm-t

interface inside the tank?

ater under the
3. What effect does the flow o

tank have on the net loads?

zed in the
4. How can these effects be ut

improvement of the design?

heories to date has .
The most conspicuous failure ©

nderneath the struc- )
been the failure to account for flc

ce in the full scale
ture, an effect which surely takes

11ly devised experiment,
tank and, except under the most car

‘egard, it is interest- _
in the model tests as well. In thi

0), in conducting force _ .
ing to note that Rao and Garrison {

11 shapes, actually had
measurements on submerged hemispher

ieasuring the pressures
to correct for the bottom effects k
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inside the model and subtracting the uplift resulting from
this pressure from the total measured loads. This corrected
force compared reasonably well with their diffraction theory,

which accounted for only the pressures on the outside of the

hemisphere.

The present work is aimed at gaining an understanding of
the effect of flow about the bottom of a submerged ocbject.
A cylihder is selected, rather than the more realistic hemi-
sphere, since the theory in this case is simpler and a more
meaningful experiment could be carried out in the facilities
avajilable. In principle, the methods used here could be used
to compute the effects on a three~dimensional object, pro-
vided more computation time could be afforded and a large

wave tank were available to compare results.

-T-4 =Copea_of ko Thesis. and _fbe..Apprraach

The present problem was selected because it offers the
opportunity to develop a "complete" diffraction theory for a
physically realizable situation which can be tested in the
laboratory. The geometry selected is that of a semi-circular

cylinder mounted close to the horizontal bottom.

The flow through the slits at the bottom of each side of
the cylinder is accounted for by assuming a source of unknown
strength at one gap and a sink of equal strength at the
other. Locally, the flow through the gaps is treated as the

flow through an orifice in an infinite wall, and the source
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strength is adjusted so that these two approximations agree

within a certain "intermediate" region.

This approach is a simple and straightforward applica-
tion of the method of matched asymptotic expansions as used
by Tuck (1971). Strictly speaking, it is only valid for
small gap widths, as determined by the ratio of gap width to
cylinder radius (=€), although recent exact solutions by
Guiney (1971) have shown Tuck's solution to be valid for
rather large values of his small‘parameter {equivalent to

e = ,4).

The theoretical problem is solved in Chapters I1, I1I
and IV. Chapter V discusses the forces resulting from the
computed flow, and compares the results with measured forces
by other investigators. Chapter vI discusses the experimen-
tal setup and the analytical procedures used to reduce the
data, as well as the results of the experiments. Chapter VII
preseﬁts a summary of the results and conclusions drawn
therefrom, including comments concerning the three-dimension-
al problem and the oil/water interface problem. The
Appendices contain an extended discussion of the matching
process of Tuck, as well as the solution for the case of an
oscillating structure which is used as a check on the com-
puter program. Finally., a listing of the computer programs

and a complete compilation of the test results are included.
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II. STATEMENT OF THE PROBLEM

y
Birection of . ﬁ
Incident Wave
—

"_‘“m__ﬂ"—“‘u___nf’-_‘Hn___,ﬂ"—-““h____ﬂf’-__ﬁiﬁm_

Figure II.1

Consider an infinitely long semi-circular cylinder
situated as shown in FigureII.l. The cylinder is fixed and
rigidly held so that its edges are a distance d off the sea
bottom. "Small" gravity waves pass the cylinder witih crests
parallel to its axis, and the cylinder in turn reflects some

of the wave energy and experiences a force.

Define the velocity potential function, &(x,y,t), such

that N N
ulx,y,t} = ve(x,y,t) IT.

where ﬁ(x,y,t) is the velocity vector of the
fluid at the point (X,y).

Throughout this discussion we will assume the motion to

1
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be simple harmonic so that the time dependence may be

separated:

o({x,y,t) = Re[¢(x,y)e_iwt] IT.2

All dependent variables will henceforth be written as
spacial functions only, with the time dependence implied by

11.2 assumed.

Non-dimensionalize independent variables as follows:

I1.3.1

I
b
3
<

(x,y}
t = t/w, 1T.3.2

........ -iﬁh+.axe dimensionless. . ._ ..

e

]
3
B,
!-l
.I
3
'
E
——
o
I

—

'r:e'ssure === EP\ASYY T, pgﬂ!!P- Hx¥ -lllllllllllllllllllllllllllllllliiiiiiii
force Fix,y) = 23%35 F(x,y) I1.4.5

where K tanh KD = w’/g

wave amplitude

a

Henceforth all variables will be assumed dimensionless
unless stated otherwise, and the caps over the variables will
be omitted. It will be convenient to define

e = d/R IT.5.1
§ = Ka Ir.5.2
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It will be necessary to examine the flow in the regions
exterior and interior to the cylinder separately. For this

purpose, define as the "outside region" that for which
x? + (y-e)?2 > 1
0 <y <D,

and tne "inside region" that for which

x? + (y-€)?2 < 1
y >0

x| <1

The flow in the outside region will be identified by the

velocity potential ;(x,y). If this is taken to be a two

ER e AT E AT Wt mT TR AT AT H e WS LAY WYt T e s cwe . T cwe T - e TTmy L T T e TEITE L
ez "eXpansiol in Erandé gorweé -may -WIlTe .= Tr: g DT iz U i (T U p@rijyrbation para

ekl NEninery,, M

L _‘1'. 9H=;t°§ﬁf’ﬁ'ﬂé'=“—"-=—__mﬁﬂﬁ‘ )

> LI O W (Y TR LS L O =b:@an N ETT
+ a2(8)¢iz(x,y) + ... 1I.6
» gage functions as yet undetermined. The al(e)'s
[I.6 to obtain We may expan
6¢'10 (X:Y) + 6“1¢11(x'y) + .. E(xly)

+ 62¢20(x,y) + .

1g we will neglect terms of 0(8%) and ; In the follo

)(6&1). This theory is thus valid only calculate terms o
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i f those terms included are much greater than those neglected,
Lee., 1if
>> 62
5al 8
In the following discussion we have incorporated the §
implicitly in our non-dimensionalization. Also, it will be
convenient to write E as tae "incident" plus the "scattered”
wave
F(x,y) = o (xvy) + o (x,y, )

where

. iK% cosh Ky
¢O(x,y) - 1€ cosh KD 1.7

sa will find that tnis representation is non-uniformly

slear the gaps it will be necessary to find another

a
-

[=+
[ =8

va
solution. We will solve for the flew in each of these
regions and match them in an overlap domain in order to find

the complete solution inside and outside of the cylinder.

TT..1_Mmtside Region

Denote the velocity potential for flow in the outside

This function satisfies the following

poundary value problem:

Vi3 = 0 II.8

J— 2 -—
5, (x,D) - 9’-55 3(x,D) = 0 I1.9
3 (x,0) =0 I1.10

Y

¢(xsrys)-n(xs;ys) =0 y, > € I1.11
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2 et 2 —
where X + (ys g} =1

~ 4 &
n = 1+ -
X Y e)i

Define (x;,y;) such that
0y 2 Dy 2
()™ Hy )" =1
defines cylinder when € = 0. Then note that

= X

X
S

¥ _~€, and that

y s

Neo e

V$(xs,ys)°ﬁ(xs.ys) =

=, 0 . 0 .0 9 Tl Py . 0 o0
V¢(xs,y;) fi(xg,yg) + ¢ 5y (ve(x],y2) -filx],v2)]

+ LRI ]

Using only the first term, write the linear boundary

condition on the surface of the cylinder as
Vo(x_,y )filx_,y,) =0 II.11.1
y >0

where x? + y2 =
s T ¥s 1

Introducing the mathematical order notation (cf. Van

Dyke), notice that equation I1I1.12 is valid to o(g). To com-
plete the boundary value problem add the condition that the
surface waves far from the object must consist of the inci-
dent wave plus outgoing waves {(radiation condition). If we
separate the function §(x,y}) into the incident wave (undis-

turbed flow) plus a scattered wave as
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T =0+ ¢ II.12

condition II.ll.1l becomes
Fo_ (g rvg) Blxgiyg) = ~Vo, (x5¥g) “Blxgyg) I1.13
ys>0

Since the boundary condition (II.13) dces not specify
the normal velocity at the position (+1,0), the problem has

not been completely posed.
The use of a matched astptotic expansion allows us

to replace this boundary condition with a flow singularity,

ard to solve the outer solution to 0(a,).

The indeterminency of the boundary conditions at (+1,0)
suggests the division of $(x,y) into two parts, one satisfying

homogeneous boundary conditions and one behaving singularly

at (+1,0). In particular, assume
o (x,y) = ¢ (x,¥) AlAn(r /rp) + H(x,y)] I1.14
where r; = Vix+1)2 + y*4, ry = JZ-1)Z + y2,

whicihh represents a regular scattered wave potential plus a
source at one gap and a sink of egual strength at the other
gap. The function d(x,y) is necessary to satisfy II.ll.1,
and is regular throughout the ocutside region; The source
strength, A, is naturally a function of the incident wave

parameters and £, and must approacih zero as € decreases;
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Lim A =0 I1.15
e+0

The selection of a source/sink combination (II.14) to
describe the perturbation caused by the gaps satisfies the
physical condition that fluid must leave the outside region
at one gap and enter it from the other. The selection of
higher singularities may be ruled out, at least to 0(e), on

the basis of the "Principle of Minimum Singularity”

{(Van Dyke, 1964) or, more formally, through the matching of
the expansion for ¢S(x,y) with another expansion describing

the flow through the gaps.

This matching procedure is necessitated by the fact that
II.14 cannot accurately represent the flow "clese" to the gaps
since the source term becomes arbitrarily large as r, Or rp

become small.
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1.2 The Inside Region

The flow inside the cylinder must satisfy the following

conditions:

Vi = 0 ' II.16.1
%% (x,0) =0 I1.16.2
Vo (x v ) "filxg,y ) =0 I1.16.3
x; + y; = 1
yg > 0

where II.16.3 is the linearized boundary condition analagous

to TI.11.

IT.16 leads to a trivial result for the case of no gap.
We expect from the nature of the outside solution (II.14)

that $(x,y) takes the form

-~

¢(x,y) =B+ Aldn r /r, + J{x,y)] I1.17

where B = a constant dependent on ¢
and the outside flow.
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J(x,y) is a regular function necessary to éatisfj Ir.16.
Equation I1.17 also satisfies the condition of continuity of
flow through the gaps if A is taken to be the same as that
in Ii.14. 1In order to find A and B the flow through the

gaps must be examined in detail.

II.3 Flow Adjacent to Gaps

In order to examine the flow through the gaps it becomes
necessary to alter the coordinate system heretofore used in
such a manner as to magnify the area under corsideration,
namely, the regions adjacent to the gaps. This may be accom-

plished by defining new independent variables.

¥, =Y =y/e 11.18.1
Xp = (x-1)/e II.18.2
Xp, = (x+1) /= II.18.3

It should be noted that the selection of this particu-
lar stretching of coordinates cannot be known a priori to be
correct. In particular, the condition required for proper
stretching is that a point corresponding to fixed values of
(XL,YL) or (XR,YR) will remain in the "inner" flow region in

the limit as € + 0 (Lagerstrom and Cole, 1955).
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Figure II.2

— v S
OQutside Region

Inside Region

Inner Regions

A

For example, referring to Figure I1.2 we can'define the
"inner" region as that region where the solutions indicated
by II.14 and II.17 become invalid. This is the case (using

&ho laft gan-.as .the examnle} when A in g, = 0(1), or when

N

r O(el/A) I1.19

L
Thus, if we consider a point described by

_ . ..=1/A
RL =re ‘

and hold RL fixed while taking ¢ + 0, r will always be

within a semi-circle wherein the outside solutions are not

valid. It will be shown later that A = 0(1/4ne), so that
Ry = I /¢

is indeed the proper stretching. It can be argued on purely
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physical grounds, however, that the point (-1,e) must always
be included in the inner region so that any stretching other
than II.18 would be inadmissiblie. For example, if we had
said

_ -1/2
YL = yLs

or Y, =y.e

the point Yy, = ¢ does not correspond to a fixed YL for ¢ + 0.

Given the change in coordinates II.1l8, we can formulate

the problem for the inner flow velocity potential:

v28(x,Y) = 0 I1.20.1
3¢ {(Xx,0) =0 I1.20.2
3Y

V¢(XS.YS)-n(xs,Y5) =0 II1.20.3

Again we may linearize the boundary condition on the

cylinder wall. Eguation II.20.3 may be written

V¢(XS,YS)-Vf(XS,YS) =0 I11.21
— - 2 - 2 _
where f(xS,YS} = (eXS 1)< + (EYS g) 1. TII.22

This function applies to the left gap, an analagous

function applies to the right gap. Expanding II.21,

29 50 B
— (X_,Y¥_ ) {eX_-1) + {(e¥ -g) =0
3§ s s =] BY s
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and expanding the whole expression in a Taylor series about

X_ =0
s ’

~

N 3P
a ¢ s

-2 9,y ) + (¥ _~1) — (0,¥ )
X s s Y S

~ 32$ :

2

px e 0y, - 22 (0¥ ¥ eyl —=1 4 .. =0
3X ax? XY

Noting the f(xs,ys) = 0, from II.22 we see that

132
(Y 1)

" 2
XS = £ ——5— + 0(e“)

and may thus conclude that II.20.3 may be written

3% (0,v.) = o0, I1.20.3.1

which is valid to 0(e). Thus to the same order linearization
as the outer problem, the inner flow may be characterized as
the flow through a slit in a veftical wall (e.g., Tuck,
1969). We may now proceed to solve the "inner" prcblem and

the "outer™" problems in each region.
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III. SOLUTION

Although the statement of the problem to 0(e) as dis-
cussed in Chapter II is straightforward, the exact solution
is difficult, if not impossible to obtain. Various approxi-
mate methods eiist, however (viz., Milgram and Halkyard,
1971), of which a direct approach will be used in conjunction
with a modeling scheme to account for the gaps. The accuracy
of the results will thus depend on the accuracy of the numer-

ical scheme employed.

III.1l Solution for the Outside Regicn

We may first consider the function ¢(x,y) which satis-
fies II1.8-II.11, the function ¢s(x,y) defined by II.12 satis-
fying I1.8-II1.10 and I1I.13, and the functicn ¢so(x,y) defined
by II.14. If we take the limit of II.14 as € + 0, recogniz-

ing II.15, we obtain

b o (Xo¥) = lim ¢_(x,y) I11.1
e+0 -

{not uniformly valid)
Thus ¢So(x,y) satisfies II.8-II.10, and II.13. In par-

ticular, write II.13 in the limiting case € - 0 to obtain

V¢So(xs,ys)-ﬁ(xs,ys] = —V¢o(xs,ys)-ﬁ(xs,ys) ITIT.2

Yg 2 0

¢So(x,y) is simply the scattered potential outside the

cylinder for the case of no gap, and may be solved by the
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direct application of Green's theorem to the region external
to the cylinder (cf. Morse and Feshbach, Chapter 7). This
method is equivalent to the distribution of sources and
dipoles over the surface of the cylinder, and can be shown to
be equivalent to a solution consisting of sources only or
dipoles only distributed over the surface (df. Lamb, 1945,

p. 59}.

Define the Green's function G(x,y|£,n) to be the poten-
tial at (x,y) of a pulsating source at (£,n) in the fluid
boundea by the free surface and the flat bottom extending in
both directions to infinity. This potential may be charact-

erized by the following boundary value problem:

v;yc = -278 (x=£,y-n) ITI.3
3G

__By (K:0|E;N) =0 III.4
3G w?R |

22 - == G(x,D|E, = 0 III.5
Y 3 { | |E.m}

In addition, G{x,y]&,nN) must represent an outgoing wave
at distances far upstream and far downstream from the source
point (£,M). G(x,y|fn) may be presented by its real and
imaginary parts:

Glx,y[&,m =g (x.ylEm) + 1 gy(xy[&im) II1.6
where g4 and g, are real functions (see Appendix B).

Applying Green's theorem to the region external to the

cylinder (but in the fluid) yields the following integral



45.

representation for ¢50(x,y):

L, 3¢_ (D)
- 1 — - ——
050 (P) = - 2—,,! [daso(r)?rﬁ(plr) - G(plr)—-%g——-—]dz-f III.7

C

where F (x,y)

p = (Ef'ﬂ)
The integration.is performed over the cylinder surface
assuming a unit axial dimension. Introducing III.2, and let-

ting_E approach the surface of the cylinder, we obtain:

' ag_(rx)
= - _ 1 = 8G — = _ 1 —i=y 'O
ts0(P) = = 7 | oD g eINI g - £ GORIT) —p— asg
c c III.8

The second term of III.8 is known since both G(p|T)
and &%(r)/an are known. The equation may be solved numeri-
cally by dividing the cylinder into a finite number (N) of
elements, such that the point fi represents the midpoint of

each element.

.

i = (cosei, 31nei)
| ITIT.9
Bi = (i-1/2)n/N
i = l’ 2' .t-I' N_lf N
I11.8 may then be written in finite element form
)
)] = K.. ¢ + F I1T.10
soj (2 13 soi soj
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where K.. =

i3 V6 (x ;) -f; (i # 3)

|5

I E~1%

_ 1
Fso. ~ N

s . G(rj|ri)ﬁ¢o(ri).ﬁi

1

The value of K,, is found by separating Vb(rj/ri) into
a regular part plus a singular part, integrating the singular

th

part analytically over the i element, and adding the value

of the regular part at the point r;.

Rewriting III.1l0 yields

. ,
} 0. (8, K;.) =F III.11

which may readily be solved by matrix inversion or least
squares techniques. A value of N=35 provides a numerical
accuracy of better than 1% for all frequencies of interest.

Computation time for these cases averages less than one

minute.

It will be convenient to define the following

quantities:
i;m bgo () = ¢SON III.l2.1
r+(-1,0)
lim ¢SO(E) = deq IIT.12.2
T+(1,0) 1

It remains to determine the function H(x,y) which, as

was pointed out earlier, represents a regular function
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necessary to insure that the second term of II.14 satisfies
the boundary conditioné. The function En(rL/rR) + H(x,y)
may actually be considered the sum of two Green's functions,
that for a source at (-1,0) and for a sink at (1,0) satisfy-

ing the following boundary value problem

Vz[in(rL/rR) + H(x,y)] = - 2n[8(x+1,y) - &§(x-1,y)] TII.1ll.1

2 ,_
s lin(ry/rp) + H(x,D)] - LRMn(zy/rp) + HEX,D)] = 0

IIT.l1l.2
2ren|ZL) ¢ H(x,0)] =0 | x| > 1 III.11.3
y x-1 ! - e
9 -
aylan(r /rp) + Hix_,y )] =0 x| < 0 III.11.4

Recalling the definition of the Green's function,

G{x,y|&,n), we may write

tn{r /rp) + Hx,y) = G(x,y[-1,0) - G(x,y|1,0) + F(x,y)
I11.12
Noting the conditions satisfied by G(x,y|£,n) in
I11.3.5, we may then find the conditions satisfied by F(x,y)

by substituting III.12 into III.l1:

ViF(x,y) = 0 I11.13.1
3F({x,D) _ w?R _

3y 3 F(x,D) = 0 III.13.2
3F(x,0)
"‘5?“ =9 x| > 1 II1.13.3

3 5 ITI.13.4
aaF (xg1¥g) = gﬁ[G(xs,ys|l,0) - G(xs,ysl—l,OJ]
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F(x,y) must also satisfy the radiation conditions.
Applying Green's theorem to the region external to the cyl-
inder, and allowing the source point to approach the cylin-
der's boundary in the same manner as III.8, yields the

integral equation for F({x,y):

r) = -1 [rd B @BID ay
ITT.14
+-,H c31H & 6F|E) - cEF|F) ar,
where ;r = (1,0)
£, = (-1,0)

L
since G(?|¥) is a known function, eguation III.14 may be

solved in the same manner as III.8.

For the purposes of matching, it is convenient to calcu-

late H(-1,0) and H{1,0). From IIT.12, we see that

Hix,y) = G(x,y)|-1,0) - G(x,y]1,0) + F(x,y) - Rn(rL/rR)III.lS

Writing
Gix,y|&,m) = &n r + gix,y|&,n),

we obtain

H(x,y) = g(x,y|-1,0) - g(x,y)[1,0) + F(x,y) III.1l6

which may be calculated directly once F(x,y} has been com-
puted. For convenience, we will denote

H H(1,0) IT1.17.1

R

H,

H({-1,0) I11.17.2



49,

IITZ.2 Solution for the Inside Region

The flow inside the cylinder takes the form indicated by

equation II1.17:

$(x,y) = Ble) + A(e) [an(rp/r ) + T(x,y)] I1.17

The function J(x,y), like H{X,y) in the outside region,
is required in order to satisfy the boundary condition on the

surface of the cylinder:

Va(x v ) *Rix_,y,) = ﬁzn(rL/rR)-ﬁ{xs,ys)_ III.18

x? +y2 =1

2
8 =

(7

Figure II1.1
RELATIONSHIP OF r, AND rp ON INSIDE BOUNDARY

=>
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This can be evaluated by.cbserving that

n(xs,ys) cos O 1+ sin 0 j Yo 0

A~

= -] ys=0
where the normal direction is taken outward from the region.

Also, writing again

rp = /{x+l)* + Y2

r_ = Y(x-1)2.+ y?

R
we get
_ & 9 2 9 .
Vin(rp/rp) = (i 55+ 3 5ol Anlrp/rg)

PR i T b YO

r_ ox rR ax

9r or

1 L ~

e

x +1 x -1 1

S s o 1 »
= /7~ =% 7l 1 +ylez - 7zl 3

L R L R

Now rewrite the boundary condition, III.1S8,

x +1 x -1

& ~ - s y 1 l
vI{x_,y.)*ni{x_,y.) = cosé [ 5 = =] + y_sinb[-7x - Z=%l.
S S 5 S IL rR =) I'L I'R
yg > 0

Letting X, = cosf and Yo = sin®, and applying the law of
cosines:

2 2(1 - cos®d)

H
Il

[
Il

2(1 + cosb),
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we can Write

= ~ _ cosi+l cosf-1
VJ(xS,yS)-n(xs,ys) = cos® [ 2{cosB+l) 2{cos5-1) ]

sin?@ [ cosB+l + cosB=1 ]
2 cos<8-1

= ¢cosSB® - cost = 0 ITT.19
yg > 0

Hence we arrive at the conclusion that J(x,y) satisfies
the homogeneous Neumann boundary condition on the surface
x; + y; = 1. This could have been deduced immediately by
simply noting that the circular shape of the cylinder corre-
sponds to a streamline for the source/sink combination repre-
sented by En(rL/rR) (Lamb, 1945, p. 70). Since the x-axis
(ys=0) also represents one of the streamlines for this motion,
we arrive at the fortuitous conclusion that J(x,y) satisfies
the homogeneous boundary condition over the entire inside

region. J(x,y) is at most, therefore, a constant, which can

be set egqual to zero with no loss of generality.

For the present it will be instructional to include
J{x,y) in the analysis, even though 1its value is zero for the
circular cylinder, For other shapes its value will ohviously
be non-zero (except for other shapes which correspond to
source/sink flow lines), and some numerical scheme (such as
the integral equation method) would have to be employed to
find its value. Assuming that this can be done, we will

denote:



52.

J,. =J3(-1,0) I11.20.1

J_ = J(1,0}. IT1.20.2

These quantities will be necessary in the matching

procedure.

IIZ.3 3olution for the Inner Flow

The flow through the gaps was shown in Chapter II to be
equivalent to 0(e) to the flow through a slit in a vertical
barrier. This result follows from the coordinate stretching

II.18, and is represented in Figure III.2.

— i — — i

S A

VAV Ay A Ay Y A e Al Al SV AN AV A A AN a4 .

Figure III.2
t FLC™ THROUGH GAP

By the method of images, this flow can be found by
replacing the rigid boundary Y=0 by the image of the vertical

barrier x=0, y > 1, (Figure I1II.3).
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Figure III.3
1'3 FLOW THROUGH SLIT

Since the curvature of the cylinder does not enter this
problem, the flow through either gap is identical.

To evaluate this flow, map the region shown in Figure
ITI.3 into that shown in Figure III.4 by using the following

mapping function:

2 = -1 cosh I11.21
where 2 = X + 1Y
zZ =& +n

The numbered points in Figure III.3 map into the corre-

sponding points of Figure III.4.
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n
A z-plane
+ -
4 - 5 + 6
1 - 2 + 3
> £
+ -

Figure 111.4

Hote that for ¢ aloﬁg the real axis in the g-plane, or
the line n = 7w, 2Z2(z) lies zlong the imaginary axis in the
Z plane. The points [ = 0 and { = im correspond to the
edges, Z = -i and %2 = i, respectively. If we introduce the

complex velocity potential, W(Z), such that

aw (2) = U1 + iv
dz
=§i 3_¢
3x T 1oy

_ awlz(r)] dr
h dz daz

Fe obtain tie expected result that the velocities become

infinite at the edges, since
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becomes infinite at these points (assuming dW/dr takes on

non-zero values there).

The n axis in the Z-plane bhetween n = 0 and n =7 cor—-
responds to the gap (-1 < ImZ < +1) in the Z plane. Passing
through this line in either plane must correspond to passing
from one side of the gap to the other. In order to show

this, write

¢ + iB

g
so that, from ITII.Z21,
Z = sinho sinB8 - coshoa cosB.

Now with 0 < B < 7, the region o < 0 corresponds to the

left side of the gap (Re Z < 0), the region 2 > 0 corresponds
to the right side (Re 2 > 0). Figures III.3 and III.4 indi-

cate these mapping regions.

The flow in the g-plane corresponding to flow through

the gap in the Z plane thus becomes simple streaming flow:
wig) = ug + C,
which, upon substitution c¢f ¢ from III.21 bhecomes
W(Z) = U cosh™tiz + c. III.22

This form is also given by Lamb (op. cit., p. 73}. Uand
C must be found from matching. In order to compare III.Z2
with the outer expansions, both inside and outside the cyl-
inder, write the potential as

o 1

$(X,¥Y} = U Re [cosh ~iZ] + C III.23
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where U and C may be conmplex (reflecting the vhase of the

flow) and functions of .

III.4 Accuracy of the Sclutions

ISents Dile -iO0W- TArougn_g gdp o L
shown that it represents as

v of the cylinder to ©(g).

pter and the preceding chapter
entials in each of the areas

-, outside the c¢ylinder and

an approximate error of

.ts, therefore, will be

wrived herein do not take into
ie finite thickness of the
:come important for small €.

in detail in a later chapter.

in an infinite barrier, we ha
well the flow through either
Thus we have derived in this
expressions for the velocity
of interest (inside the cylin
adjacent to each gap) to with
0{g). The accuracy of the re

limited by the size of the ga

In addition, the results
account real fluid effects ox
cylinder wall - both of whick

These effects will be discuss
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IV. MATCHING THE SQLUTIONS

The method of matched asymptotic expansicns is treated
by Van Dyke (1964), Cole (1968) , and in considerable detail by
Lagerstrom and Cole (1955). The particular problem of concern
here, that of flow through a small aperture, has been treated
by Tuck (1971) in finding the reflection and transmission co-
efficients for a vertical barrier with a submerged slit. The
method used by Tuck is virtually the same as that used here,
and it is instructional to consider his problem in scme
detail. Appendix A includes, therefore, a discussion of
Tuck's problem using the alternate matching schemes. Newman
{1967) used an identical matching technique to compute the
flow past a ship of large draft in shallow water. Widnall
and Barrows (1969) used a more complicated, but straight—,
forward, matched asymptotic expansion scheme to find the lift

on two-and three-dimensional wings in ground effect.

Before turning to the explicit solution of the problem
at hand, it may be helpful to review the rationale behind
employing the method of matchned asymptotic expansions and the

basic technigques of its implementation.

First, we have assumed that the correct solution for the
flow has been altered only slightly by the occurrence of a
small gap at the cylinder edges. Solving this problem in-
volved the postulation of a perturbation potential, ¢S(x,y)

which would approximate the correct correction for the gap
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for finite values of £, and would approach the exact correc-

tion asymptotically for small €.

In particular, if ¢p(x,y) represents the exact solution
for our problem (which we cannot calculate), we have shown
that the solutions derived in Chapter III approximated ¢p

with an error of 0(g), or, in other words,

¢ (XIY) - d} (er)
lim P = = K Iv.1

e+Q e

where ¢S(x,y) is represented in II.14, and X is some constant

which numerically is of order unity.

The above limit states that the error, for sufficiently
small values of e, is directly proportional to €. This is,
in fact, the precise definition of what is meant by the

asymptotic ;epresentation

b_(x,y) = ¢ (x,¥) + 0(e),

{(cf. Lagerstrom, 1957}.

We have further postulated that the correct form for the
function ¢s(x,y) is that of a source/sink combination plus a
regular function of (x,y), as indicated by II.l14. This solu-
tion satisfies all the conditions of the problem {Chapter II)
except that it does not provide the correct representation of
the flow near the edges of the cylinder, thus leading to the
fact that IV.l becomes invalid in those regions. Because of

this, the complete problem cannot be solved, even to ole),
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without special consideration for what goes on in the vicin-

ity of the gap.

This leads to the formulation of the "inner" problem to
describe the flow through the gaps (Section II.3). The
inner problem results from a coordinate transformation and
stretching which magnifies the region of non-uniformity (the
region where IV.1 is not valid) so that the perturbation
potential becomes a first order function. That is, while the
effect of ¢ on the "outer" solution (II.14) is presumed small,

its effect on the inner solution is, by definition, of 0(1).

Botn the "inner" and the "outer" problems are incomplete.
The outer problem does not specify a boundary condition at
the edges of the cylinder, and the inner problem does not
specify the boundary conditions far from the edges. The com-
plete solution cannot be found, therefore, without the added
condition that both the solutions match within some inter-

mediate region.

This condition implies the existence of an "overlap do-
main". That is, there must be a region in which both the
outer and inner solutions are equally accurate representa-
tions of the exact solution. We may illustrate this with
reference to the present problem. As we have seen, the
"outer" solution (both inside and outside the cylinder) con-

sists of log terms plus regular terms:

¢S(x,y) = A[Rn(rL/rR) + H(x,y)] + ¢so(x,y)
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Approaching the left gap from the left along the x axis

yields
_ [x+1 -
o, (x,0) = Al4n( x- 1]) + Hix,0)] + ¢, (x,0) V.2
Near the point x = -1 the log term becomes singular, but

the other terms are well behaved. We can therefore expand

all terms except the log in a Taylor series about x = -1l:
0. (x,0) = Alan(x+1) = &n(2) + H(-1,0)] + ¢, (-1,0) + ...
lim x»-1 IV.3
which may be written
¢S(x,0) = A[n{x+1}) + QL] + P+ ... Iv.4

lim x->-1

2, and P are the constants indicated by IV.3.

As we have mentioned, the above solution is non-uniform,

since our assumption that ¢S approaches the exact scattered

potential for e+0 is not valid when |x+1| becomes too small.

This is the case when x+1 = 0(e '/®), since the term

Aln(x+1l) then becomes 0(1). On the other hand, for suffi-

ciently large values of |x+1| the Taylor series (IV.3) must

SR PR TR R R e e O R A RR N eN 88 B A M ACOU L A0 e WG G i sl s

|x+1] = 0(A), for example, the error incurred in truncatir
the Taylor series is equal to the term of interest, namely

the leading term of IV.4.

; Equation 1IV.4 holds, of course, no matter which patt

chosen to approach the gap point, provided (x+1l) is replac
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by r For the present we will stick to the x-axis, however,

L
since the purpcse here is to illustrate the method. For the
general case, iif0.¢s(x,y) is referred to as the "inner limit
of the outer solution”. Speaking in terms of IV.4, we can

say tnat this expression is valid to 0(R), provided

e 1/A |x+1] < a.

Turning our attention to the inner solution,

${X,Y) = C + A Re cosh ™+ iz

We may also examine its value along the x-axis:

6 (%,0) C + ARecosh™! X |

~

¢(x,0)

C + A Re cosh™ ! i|x/¢| IV.5

For sufficiently large values of |X| , IV.5 becomes

{see Appendix C):

5(X,0) = C + A 2n2X + 0(55) V.6
lim X»e

Rewriting IV.6 using outer variables yields:

~ 2
$(x,0) = 3 + A[fn(x+l) + 2n2 - %ne} + 0(——-) V.7
lim X- | %+1]|

This expression will be valid to 0(A) provided |x+1]| > e.
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In addition to the reguirement that |[x+1[ > ¢ for the
asymptotic form IV.7 to be valid to 0(l/4ne), we must also
recognize that the ccmrclete inner scolution, IV.5, is only

valid for values of r. (or rQ) close to the gap, i1.e.,

r. < yie}.

In this regard we observe that, in particular, the cur-
vature of the dome is not accounted for in IV.5. We must ob-
serve, therefore, at what radius the error in the wall boun-

dary condition becomes 0(g).

S S S S S S S S A S A G A o & v e el
FIGURE IV.1 INNER FLOW REGION
Writing the potential
$(x,y) = C + AlRe cosa T 1z] IV.9

and the condition on the surface of the c¢ylinder that there

oe no velocity normal to the surface:

%(xs,ys) 'ﬁ(xs,ys) =0

where x2 + (ys-e)2 =1

o]
b
<
il
5
'_l

+ (ys—a)ﬁ,
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Now, let

£y _ .} error in boundary condition

Vo(x_,y ) n(xg,v,) Iv.11

It will be more convenient to evaluate this expression
using complex variables. Thus, since we are only concerned

here with velocities, represent the complex inner potential

as
W(z) = cosh™% iz 1v.12.1
where % éﬂé%l = U + iv IvV.12.2
T
U= 32 IV.12.3
_ 3
Z =X + 1¥
Now we may evaluate f(ys,e) as
£{ £) = A Re EE dw (Z) Iv.13
Yg! - € dz )
where z_ = X_ - 1{ys—€)
Now
-1,
1 dW(2) _ 1 d cosn ~(12) _ 1
€ dz T € az - Iv.14

Y(2+1)2 + g2

where use has been made of the coordinate stretching

z2 =€ + 1.

So we may now write
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z
s

JIzS+1)2 + e°

£(y ,€) = A Re

Expanding for small € yields

25 g?
f(ys,e) —ARE{TZ—STT)— [1 +Z+—l-+ — }

If we insert the values of Es and z_, and take only the

real part, we odbtain

1+ 2ey, - €’ - 2y2 - VI = (y-€)2 + yg€

=

flyg,e) = A
2 + 2ey, - e? = 2/1 - (y_-e)?

We find from this tnat lim f(ys,e) = 0, as it indeed
Y.7€
S
should since the edge of the cylinder is exactly vertical.
To find how this error function behaves for y_ > &, expand in

a Taylor series about v = €. This yields

. _ e(ys—s) _
{ys.e) 2 A e— Ae(ys-e) Iv.15
{ 1+¢?)

when only the first term of the Taylor series has been re-

tained.

If we match solutions to O(Gl), the inner solution

remains valid to f(ys,e} =a s OX, from IV.15,

3.

iy R
We have noted that the outer solution becomes invalid
to 9{(1l/4ne) for rL(rR) = ¢, since the second term of IT.14

becomes the same order as the first. The region between
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r, o=« and r, = e + al/e = € + l/eine is therefore an over-

lap domain wherein both solutions are equally valid,
Matcning, therefore, is accomplished by simply setting

these two limit processes equal. It is interesting to note
that the discovery of the precise regions of validity of
each solution confirms here the existence of an overlap re-
gion where both solutions are equally good, thus justifying
the matching to be carried out here. 1In general the method
would work even if there weren't an overlap region, due to
the existence of an "intermediate® region lying between the
inner and outer regions in which another solution (found by a
suitable intermediate Stretching of variables) may be found.
By tihe Kaplun extension theorem (Kaplun, 1954), both the

inner and outer regions would overlap into this intermediate

frsmad 11 T N ey St T B -
so swamsw LoURIITD G LNNEF and ouler 'SETudiongnesdeiy 0 T L

It is also important to note the distinction between the
itching of two solutions valid in adjacent regions, and the
atching” of two solutions. This latter method, used, for
ample, in finite element calculations, is accomplished by
lecting 2 .oundary common to two regions, and adjusting the
lutions in 2ach region so that the numerical value of the
¢ sclutions {or their derivatives) are equal on that
undary.

Matching, on the other hand, is based not on the exis-

nce of a common boundary, but of a common region of

double matrching onpratiom: Sanbroc s

Bt N i



validity. The two solutions must,

of course,

66.

agree numer-

ically throughout this common region (to within a specified-

accuracy} but must in addition {or as a consequence) be of

the same functional form.

Figure IV.2 shows possible plots of the outer and inner

solutions (IV.4 and IV.7 respectively) for the potentials

along the x—axis.

—— - Toutar" SGlL!th)f—l———-'—— -

T "inner" solntion

Figure IV.2 |

RATION OF MATCHING| REGTON. | . . ..

tching Schemes

x £ i . .
nt RL or RR in the inner region
) or (1,0) respectively as ¢

oints r* or r* remain a fixed
L R

T"inner' soly

for larg

wtion-» fnpx. .
e X

“"outpr" solut
"~ n x for
cmall KI . ILL

Iv.1l Heuristic vs, Formal

We have seen that a
moves toward the point (-

decreases. In addition,
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distance from (-1,0) or (1,0) as'e decreases. We are thus
led into the diiemma that the two regions of validity (the
"inner" région associated ﬁith RL or RR; and tnhe “outer"
region associated with r, or rR) may not remain overlapping

in the limit as € + 0, since Ri'and Rﬁ decrease as ri and r§

remain fixed.

This problem has been associated with thin airfoeoil
theory (Van Dyke, 1954, Chap. IV) and with low Reynold's num-

ber flow'{Kaplun, 1957).

It should be noted, in this regard, that one may view
these matching problems'from either a heuristic or a rigorous
point of view, depending on oﬁe's purﬁose. ‘The method
employed by Tuck (1971) and Néwman (1967) may be classified

as "heuristic", or, as Tuck has stated, "semi-intuitive".

The heuristic, or semi-intuitive, method may be con-
ceptualized as follows {(with credit to Professor Tuck): The
inner.flow may be described as that seen by a near-sighted
"midget" seated in the middle of.the gap. He is unaware of
either thé existence of the free surface or the shape of the
cylinder (its curvature), and must conclude that he is simply
experiencing a steady motion through an aperture in a straight
barrier with no other factors affecting the flow other than
the size of the gap and his own presence (which we ignore}.

If the midget views the flow far from the gap, through a tele-

scope, say, he will see that the flow on one side is streaming
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toward him like a sink, and on the other side the flow is

disappearing in a sourcelike fashion. Even with a telescope
the midget would not be able to detect the subtleties of the

outer flow such as the free surface.

The outer flow, on the other hand, may be considered as
that seen by a farsighted giant who is, perhaps, lying face
down in the water. The giant is capable of determining the
shape of the object (the cylinder), and can feel the effect
of the free surface, but he cannot see the gaps at the edge
of the cylinder. He does, however, note that fluid is leav-
ing his field of view at one edge of the cylinder and appear-
ing at the other, but he is unable to see the flow through
the gap. If the giant puts on a set of spectacles, he is
able to perceive the details of the gap flow only to the
extent that he can verify that there is indeed a source at

one gap and a sink of equal strength at the other.

The heuristic matching process simply states that the
flow as seen by the midget with the telescope must be exactly

the same as that seen by the giant with his spectacles.

This approach to matching is usually referred to as the
"1imit matching principle", and is usually stated as follows:
The inner limit (of the outer limit)
= the outer limit (of the inner limit)
Tt was first used by Prandtl to solve the problems asso-
ciated with the boundary layer effect on inviscid flow models.

Its success hinges largely on the existence of an overlap
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domain wherein the two limit processes described above do

actually apply, although it may succeed even in cases where

no overlap domain exists.

A more rigorous and satisfactory solution was preferred
by Kaplun (1957). According to Kaplun'é extension theorem,
even when no region existed in which both the limits described
above were valid, there must exist another 501ution limit

arbict =2varidl 2ni cusbenss tivteyIoi anobasunouthanduieonsnenos
of the inner and outer limits, and which may be matched to

each of the two previous limits, therefore providing a link

between the inner and outer solutions. This region spanning

the "gap" (not the "gap" in our problem) between the inner

and outer regions is known as the "intermediate region®. It

is obtained by introducing a coordinate stretching similar to

the inner coordinate stretching, but not as strong, which

would allow a variable in the intermediate region to remain

between the inner region and the outer region as £ =+ 0.

To see how this works, let us define an intermediate

variable for our problem as:

- 1/2
R = rL/e Iv.23.1

ol
|

_ et | IV.23.2
R R . . » -

Now, if we select a point ri (dealing with dnly the left
gap does not alter the generality of the discussion) which is
some distance from the gap (-1,0), the same point written in

intermediate and inner coordinates becomes:
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1
R* = r* /2
R} = rp/e
* = *
and RL rL/e .

and if we solve the appropriate problem in each of the
regions (with the appropriate coordinates inserted into the
egquations of motion and the boundary conditions), we cbtain

three different solutions:

E(ri) cuter solution
¢(§£) intermediate solution
$(R£) inner soclution.

1f the asymptotic expression of each of these solutions
is found by taking the limit as & » 0 with rf, §i and R¥
fixed, respectively, we discover that the three points {in
each region) do not remain a fixed distance from the gap
(-1,0). In particular, ri remains a fixed distance from the
gap, ﬁf decreases like eﬂé and Ri decreases like £. Thus the
three points separate, the "inner” point approaching the gap
faster than the intermediate point, and the outer point
remaining fixed. It appears that, without Kaplun's theorem,
the heuristic approach would be subject to considerable doubt.
The success of the heuristic approach depends on the nature
of the problem and on the dependent variables used in the

matching. It works, for example, for the tangential velocity

in a boundary layer but not for the normal velocity (Van Dyke,

1964).



IV.2 Matching by Means of an Intermediate Solution

We will herein write the matching equations for the

71.
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or ER remains within these regions as ¢ + 0. Noting that

lim a(e) = 0,
e+0

we find that the solution for the flow in the inner region is
also that for the flow through an aperture in a vertical

barrier. This approximation is valid to 0({a).

Thus there is no need to solve a separate problem for
the intermediate regions. We simply have to write the outer
solution and the inner solution (which is also the inter-
mediate solution) in terms of the variables ﬁi and ﬁR’ take
the limit ¢ + 0, and set equal the corresponding limits.

Thus we may proceed in a straightforward manner:

Region 1l

Outer Solution

¢o(§) + ¢30(E) + Alfn{r /rp) + H(z)] 1Iv.24.1

Write in intermediate variables for region 1

¢o(uXL-1,aYL) + ¢SO(GXL—1,GYL)

)y + H(aXL-l,aYL)] IV.24.2

Take limit a =+ O, ﬁi fixed

¢, (-1,0) + ¢so(-1,o) + A[zn(aﬁL/z) + H(-1,0)] 1v.24.3

Inner Solution

_..l . l
CL + A Re cosh (:LRL) 1Iv.25.
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Write in intermediate variables for Region 1

Cp * A Re cosh_l[iuii/e] IV.25.2

Take limit o » 0, EL fixed

C. + A[in2aR. - ine] Iv.25.3

L L

Now IV.24.3 and IV.25.3 must be egual, so we set

¢, = ¢O(-l:0) + ¢so(_l'0)’ H = H(-1,0) and write
¢L + A[Rnﬁi + fno - &n2 + HL]

= CL + A[QnRL + fno + £n2 -~ &Lneg] iv. 26

from which, by noting that the &n L and Lna terms cancel, as

indeed they must, we arrive at the equation

o, = Cp + Af2¢n2 - &ne - HL] Iv.27

We get similar equations in each of the four intermed-
iate regions.
Regioh 2
Quter Solution
B + Alfn(rg/r;) + J(T)1] Iv.28.1

Write in intermediate coordinates for Region 2

AR_+2

B + A[an( )y + J(aiL-l,aYL)] Iv.28.2

G.RL

Take limit o = 0, ﬁi fixead

B + Alfn2 =~ RnaRL + J(-1,0)1] Iv.28.3
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Inner solution written in intermediate variables

-1,. —
CL + A Re [cosh (laRL/s] IV.29.1

Take limit o =+ 0, ﬁi fixed

Cp - Alfn2 - fne + Enaﬁil IV.29.2

Equating IV.28.3 and IV.29.2 yields

B = CL + Af[-2.n2 + fne - JL] Iv.30

w7 - - ,,':!_{Jr]—_-' 0)

Take limit o =+ 0, ER fixed

B + A[LnaRR - in2 + JR] Iv.31.2
where J = J(1,0)

Inner solution written in intermediate variables

Cp + A Re cosh_l(iaﬁR/e) Iv.32.1

Take limit a =+ 0, ﬁR fixed

Cpt Al2n2 - &ne + LnaﬁR] IV.32.3

Equating IV.31.2 with IV.32.2, we obtain

B = CR + A[2&n2 - ine - JR] IV.33



Region 4
Outer solution written in intermediate variables for Region
¢O(QXR+l;uYR) + ¢SO(GXR+1,GYR)

oll- +2

Z.— ) + H{aX_+1,0Y.)] IV.34
e R R

+ A [&n {

Take limit o - 0, ﬁi fixed

¢R + A[fn2 - znaRR + HR} IV.34
where ¢R = ¢o(l'0) + ¢so(l'0)
HR = H{1l,0)

Inner solution written in intermediate variables for Region

Cq + A Re [cosh_l(iaﬁk/s)] IV.35
Take limit o -+ O, ﬁL fixed
CR - A[fn2 - &ng + £naRR] IV.35

Setting IV.34.2 equal to IV.35.2 yields

¢R = CR + A[=-24n2 + fine - HR] iv.36

From the above we extract four matching equations to

find the unknown constants:

¢L = CL + A[2%n2 - &ne - HL] Iv.27
3 = CL + A[-22 + &ne - JL] Iv.30
B = CR + A[24n2 - Lne - JR] iv.33

¢R = CR + A[-2&n2 + ine - HR] IV.36

76.
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Sclving these equations results in the following expres-

sions for the unknowns. The algebra is simple, and is

omitted here.

A= o, = %g V.37
8in2 - 4kne + Hy - H_ + J. - Jp
¢. + ¢
_ _L R_ A - -
B = 5 + 5 [Hp - I+ Hp - Jp] IV. 38
B+ ¢ + A[H + J 1} '
_ L L L
C. = 5 IV.39
B+ ¢, + A[H, + J.]
Cq = R : R R IV. 40

I1V. 3 Discussion of Matching Results

These equations confirm the results of the previous
section, i.e., that A = 0(1/4ne), as indeed it must in order
for the matching to work. It is interesting to note that the
value of A could be written in the form of an asymptotic

expansion in 1l/4&ne.

N
_ n
A= ] A/(&ne) I1v.41
n=1
where

- n=-1,,n
= T - + -
An {(8enz + dR HL JL JR) /4

This suggests that a step by step matching procedure
could have been used to obtain the same results. Appendix A
discusses the problem of a single slit in a vertical wall
using both a step by step method and a "block" matching

process (i.e., the heuristic method).
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The constant B (eqn. IV.38) is of some interest.

Although its value has no effect on the flow, either inside
or outside of the cylinder, it represents a pulsating pres-
sure which is felt throughout the inside region. It thus
takes on a primary importance in the calculation of the ver-
tical force on the cylinder.

Furthermore, since B takes on a first order value equal
to 1/2(4':L + ¢R),.we are confronted with an apparent paradox.
In the limit ¢ - 0, B remains a fixed 0(1l) constant implying
0(l) pressure fluxuations on the inside of the cylinder for
no gap. For the original zero gap problem, however, we assume
that there is no pressure fluctuation on the inside of the
cylinder. This would indeed be the case for the idealized
model, since there would be no explanation for the communica-
tion of pressure from the outside region tec the inside region.
The inside of the cylinder could not "know" what the behavior
of the fluid was outside, or, indeed, whether there was any

Eluid on the outside whatsoever.

This behavior may be explained by considering the
incident wave as the sum of two standing waves, a symmetric
part and an asymmetric part. The first order pressures at
the left (pL) and the right (pR) gaps due to the symmetric

and asymmetric parts respectively may be written

Py, = PSYmCOS (wt+a) + pasym51n {wt+B)

Pp = Psymcos (wt+o) - pasym51n (wt+B)
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The symmetric part of this pressure will not drive any
flow through the gap. The inside pressure in phase with the
symmetric outside pressures must therefore be simply psym'
On the other hand, the asymmetric pressures will induce
motion through the cylinder but will cause no constant

pressure rise in the inside region,

The calculation of forces will be discussed in more
detail in Chapter V. We will turn for the moment to another

look at the matching.

1V.4 Unigqu2ress of Matched Solution

The present problem may be treated without resorting to
the matching procedure. We could, for example} treat the
cylinder as a two-dimensional body immersed in a moving fluid
and calculate the scattering by an integral equation method

(see, e.g., Wehausen and Laitone, p. 533).
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3v this method we would find that the cylinder could
be represented by a vortex sheet coincident with the cylinder
surface. Tie strength of the sheet would equal the differ-

ence in tangential velocities across the surface of the

cylinder-

Unfortunately, no method exists for solving this integral
equation exacEly. If one did, we could in principle evaluate
it for small e by expanding about & = 0 {(where the vortex
strength becomes proportional to the outside tangential
velocity). As it is, the solution must be found numerically.
A numerical solution would, however, become insensitive to
small changes in € for small gaps, and would not be practical

for the range of gap widths of interest.

The formulation of the problem in terms of a body
immersed in a fluid raises some theoretical guestions about
the matching scheme, however. In Chapters II and III we
formulated the problem for three separate regions. Each
region is simply connected, and the solutions formulated are
unigque.* The formulation of the problem as a body immersed

in a single region represents flow in a multiply connected

*The proof of the uniqueness of the solution derived via
Green's theorem is given in any book on partial differen-
tial eguations {e.g., Garabedian). It should be noticed
that the uniqueness property does not pertain to the eigen
functions characterized by the singularities at the edges of
the cylinder. The elimination of higher order singularities
rests on energy arguments and on Van Dyke's "principle of
least singularity".
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regicn, however. Flow in a multiply connected region (such
as flow past an air foil) cannot be uniquely specified by
Laplace's equation and the boundary conditiecns. Such flow,
satisfying all the boundary conditions, may contain an
undetermined amount of "bound" vorticity (vorticity which
does not travel with the fluid particles) which is mani-
fested by a fixed circulation, TI', about the body (cf. Lamb,
§49) .

In order to arrive at a solution in a multiply ccnnected
region the circulation T must be specified. The problem as
put forth in Chapter II appears to be incomplete, there-
fore, since no value for I' is determined, and since we have
already seen that the problem is conceptually equivalent to
a cylinder in a fluid region.

The resolution of this dilemma, and the justification
for the matching scheme, rests on the fact that the total
circulation about the cylinder has implicitly been set equal
to zero by the matching itself, as can be seen from the

following discussion.

The circulation, ', is defined as the integration of the

tangential velocity around a closed loop.

r = % a2 - af IV.42
4

at
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If the motion is irrotational and the loop C is drawn so
that the region inside the loop is simply connected (i.e.,
free of any bodies), T must egual zero. If, on tae other
hand, the loop contains a pody, tile value of I cannot be deter-
mined from potential theory. (Its value for air foil problems
is fixed by an empirical observation that the aft stagnation
point moves to the trailing edge of the foil. This conditicn
is called the Kutta condition - see L. Prandtl and O. G.

Tienjtens, Figures 42-51.}

In order to fully specify the problem set up in Chapter Il
we must tien specify the value of T as defined by 1V.42 to be
zero. The rationale for selecting this condition rather than
involving tae Kutta condition (saying the trailing edge is a
stagnation point) is discussed in Chapter VI with regards to

the experimental results.

Figure IV.3 shows the path of integration drawn about the

cylinder a distance £ off the bottom.

The points 1, 2, 3, 4 are located in the "intermediate"
regions. In order to perform the integration, split the loop

C

C into four segments: and C4l’ where the seqg-

Ci2r 237 34
ment referred to lies between the points designated by the
subscripts. We may evaluate tihe integrals over each of these

segnents by noting that, for the line integral between points

a and b,

ﬁ

o
o2
o

p(b) - ¢(a)

a?
<
QJ
=
[k}
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Wwe may therefore write

2 By 3 . Y 1 .-
2% 4y = —Logg + 3% ag + —R an o+ 3% 4
37 | , 3% , 3% ,

Ypg = Vg T 93 7 by F g, T Vg T O T 0,

IV.43

where i ¢3, etc. refer to the functions gL,$, etc.

L2’ Y1’
evaluated at the points 1, 2, 3 and 4 (Figure IV.4) respec-

tively. We may designate these points in intermediate var-

iables: ﬁl’ R, » §3 and R,, and write, setting the expression
for T equal to zero {egn. 1IV.43),
-1 iﬂﬁz - iC‘LEl
0 = CL + A Re cosh ~( - ) - CL - A Re cosh ~{
a§3 2
+ B + A &n[ —— ! + J(1,0) - B -A [ — ] - J(-1,0)
aR
3
1 1aR4 1 1aR3

+ CL + A Re cosh ~{ =

aﬁl
¢0(—1,0) + ¢so(-1,0} + A [En(—i—) + H(-1,0}]

+

6,(1,0) = 9. (1,00 - A [in(-2) + H(1,0)]
aR
4
Here ﬁi is the radius measured in terms of the inter-
mediate variables from the point (~1,0), for i = 1 and 2, and
(1,0}, for i = 3,4, to the point i. This expression becomes
asymptotically wvalid for small gaps, sc, as in the matching,

it is appropriate to evaluate it in the lim a +> 0 keeping
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ﬁi, i = 1- 4, fixed. Taking this limit in the same manner as

before we arrive at,

2aR 2aR R
0 = A { -&n{ = ) — an{( = )+ Rn(—ﬁﬂ) + JR
2aR 2aR
- ln(_g_) - Jp - an ( 4) - &n( 3)
— €
aR
2
aﬁl 5
+ 2,1’1(-—2'"—) + HL - .Q.n("—:'—) - HR } + ¢L - ¢R
GR4

In

A { 4gne - 8&n2 + Hy - Hp + Jp - Jp } + 6y - 0p

This yields the relationship

or " g

4ne - B84n2 + HL - HR + JR - JL Iv.44

A

which is precisely the same result as that found by matching
(eqn. IV.37). If the circulation is specified I, the source
strength becomes

r + ¢R - ¢L

4ne - 8in2 + ﬂL - HR + JR - JL

B = Iv.45

Tiaus the solution found by matching is indeed unique,

and assumes a circulation of zero.

IV.5 Flow Impedance

The guestion may be raised as to what would be the
effect of altering the gap geometry or the inside flow. The

assumption that the cylinder wall has zero thickness, for



example, is clearly violated in practice,

the experimental tests had a8 wall thickness of 1l/8",

order as the gap width.

We may define for this purpose a gap

85.

The models used in

the same

"impedance"” which

will indicate the relative resistance of the gap to flow. In

a direct analogy to electrical circuit theory,
this impedance as the potential difference across the gap

required to induce a unit current {(flow strength),

we can define

If the

point Py lies on one side of the gap and P, On the other, the

impedance, I, may be defined as

I =

A

IV. 46

If we consider the flow through a gap in a wall with zero

thickness, for example, the impedance may easily be seen to

egual

3 2L 4 in.2
gan e £ T : =

m

lance naturally increases with r (the distance

:r of the gap). The quantity of interest, how-
.part aof the imnsdanse arthisnh s Sndsnemdani-osf
We may term this the "characteristic" impedance

1 may write from the above expression

1p = characteristic impedance = 2in T

2l exhibits a characteristic impedance. For

1lculation of A in the preceding section may be

an aéplication of Kirchoff's law to the "“circuit"

The im
from the ce
ever, is th
the distance

of the gap,

Any cha
example, the

thought of a



circumscribing the cylinder (Figure IV.3)

ing impedances have been used:

86.

wherein the follow-

Section 1°
Qutside Dome -24n2 + HL - HR
Inside Dome -2in2 + Jp - JL
Gaps (2) -28n 2/¢
Total 4g¢n - 8&n2 + HL - HR + JR - JL

The first order potential across the

cylinder (¢, - $r)

may be thought of as a battery (a "current independent”

voltage source) hooked into the loop pictured in Figure IV.4.

V.4
THE CONTQUR INTEGRAL

simple ohm's law for this case.

computed as

B
O

¢ .+ 21°
inside gap

I

Ioutside

inside
FIGUI

I ELECTRICAL ANALOG

Kirchoff's law

The current, C, may

becomes

easily |

o

Toutsia
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which is equivalent to eqn. IV.44. It should be noted that
the introduction of a finite circulation is equivalent to

stepping up the potential of E.

The purpose of elaborating here on the electrical analog
is simply to aid in the conceptualization of the problem. It
becomes easy to see now the effect of altering the geometry of

the gap or the inside region.

For example, consider the problem of a cylinder of finite
thickness., If the zero thickness cylinder represents the mean
line of the finite thickness case, Figure IV.5 shows the

situation.

P77 7277777777777 777277777777 77,77777

FIGURE IV.5

Provided the thickness of the cylinder wall is not too
great, the main alteration of the previous result will appear

in the characteristic impedance of the gaps.
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1€ gap will be affected by a change in gap geometry.
Whether it will increase or decrease depends on the exact
nature of the inner flow, the type of singularities present
at the edges, etc. Guincy (1971) has indicated that the
extraordinary transmission properties of the submerged slit
may be eliminated when finite thickness is taken into
account. This suggests that 1€ gap will indeed increase for

realistic gaps.

The total impedance may also be increased by the
presence of an obstacle in the inside region. Any obstruc-
tion to the flow will cause the streamlines to come closer
together thus increasing the potential drop along a stream-

line needed to sustain a given flow.

pnpeanve-Iifeconz=s f_tbene iwscdavcacaharromencdnfied o dogomnlatn
i T| I%L-”l i Ul
1T 2OEIUMmLeJr. %L an JLﬁLm:Ln |J‘J%
;L > 1n=LLe gionl}l for eximghet L { hLo' g
(A man A Gg L LA
U LOI LLL LtL LnnL: ELDtUE1l[L@C¢~LE qapﬂ
an|J(f
inAe ) ]| midn %L) . zii #(q€en)
gl nadell bonguantiiyntneieriec .ol he Nollattenpt L.aﬁ
Photographs of the gap flow (Appendix finite wall thickne
: factors may be of overriding concern. F) indicate that ot

:ussed in Chapter VI. : These factors are ¢
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V. FORCES ON THE CYLINDER, REFLECTION COEFFICIENTS

Once the velocity potential both outside and inside
the cylinder is known, the calculation of forces becomes
straightforward. Bernoulli's equation for pressure in
unsteady irrational flow may be linearized and written,
noting the nondimensionalization introduced in chapter II

(egn. IT. 4.4):
P(x,y,t) = - %%(er:t)

Re[ i¢(x,y)]

The total force on the cylinder will equal the integra-
tion of the net pressure over the cylinder's su face times
the appropriate direction cosine. This neglects viscous
influences.

Figure III. 1 (page ) shows the cylinder and the co-
ordinates system used. 1In the notation used before, we
repeat the velocity potentials for the inside and outside

regions respectively:

$(r) =B + Aln(r /rp) v.2.1

F(T) = ¢ (¥) + ¢So(;) + Al In(r /rp) + H(T) ] V.2.2

J(f) has been set equal to zero, as it must for the
semi-circular cylinder (Chapter III). A computer program
+ > >
has been written toc compute ¢o(r). ¢__(r) and H{(r) on the

S0

surface of the cylinder.
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The net pressure on the cylinder is the difference of
the pressure acting inside and that acting outside the
cylinder. Thus, for a point (xs,ys) on the cylinder

+ 2
(r, = xsf + ¥ 1), the net pressure becomes

iwt

P (xsr.ysrt) = Re ie_ [ a;(xsrys) - E(xsrys) J

net
or, writing in complex form

¢$(r) =B + AEn(rR/rL) v.2.1
() = ¢O(?) + ¢SO(?) + Alfnlr /rp) + H(T)] V.2.2

J(?) has been set equal to zero, as it must for the
semi-circular cylinder (Chapter III). A computer program has
been written to conmpute ¢o(;), ¢So(;) and H(;) on the surface

of tne cylinder.

The net pressure on the cylinder is the difference of
the pressure acting inside and that acting outside the cylin-
der. Thus, for a point (xs,ys) on the cylinder (;s==xsf+ysf),

the net pressure becomes
. =iwt v -
Pnet(xsfys.t) = Re [1e [¢(xs.ys) - ¢(x .,y ))]
or, writing in complex form
plxgry ) =1 [o(x v ) - ¢(x v )] V.3

The net pressure is taken positive in the direction away
from the center of the cylinder. The horizontal and vertical

forces on tne cylinder may now be written as:
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. T N N
Fa = 2 [cose{B o, E,) Co, (Fy) + Al2tn(rg /e ) HE)] as

i m
8]
V.4.1
o2 [ r (F ) +A[22n( } - H(Z )] ;a8
FV T (flne B'-¢o(rs) _¢so rs +h[2%n rRs/rLs (rs ]
VI4.2
where Tpg = 2 sin 68/2
'rLS = 2 cos 6/2

The integrals in V.4 may be divided into those which
msatobeceuwaluatad. unmerical)y .and.those.whinb _can_be eval-

uated analytically:

Numerically

i T (cos 6@ N N N
f;-L) {sin e} [9,(Tg) + ¢ (Xy) + RH(r)]) as

i(KR cos Bn)

- 21 q cos 8n cosh (K sin 6ple + ¢ + AH
N =1 ‘sin 6 cosh K 5%q n
n n 1 Ky
v.5.1
Analytically
. [ cos B 1 f 0 1
.- 2iB [ VAR = L S V.5.2
T TR Rt -
1 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII‘é. ==-- = " W 1Z28
. srn=Ba T
. cos 8 r - cos 8
:an(8/2)ds 4ia I en(-25)yde = 4ia J
T r m
0 Ls o]

sin B sin 6
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4iA
= V.5.3
0
where
H = H{cos 6 ,s5in 0 )
n n n
- -
en = 3 (n i/2)

These expressions are evaluated in the computer program
listed in Appendix F. It has been common practice among
engineers calculating forces on -ocean structures to use what
is known as "Morison's formula" (Morison, 1951} to compute
horizontal loads. By this formula, the (dimensional) hori-

zontal force on an object is written {omitting the drag term):

F = pVC du V.6

where v volume displaced by the object

¢.. = a mass coefficient, a function
of the gecmetry and period

acceleration of fluid particle at
the center of the object when no
scattering takes place (i.e., when
the object is not there).

au/dt

If the point (0,0) is taken as the center of the object,

v _ 3 ak
at ._Jl__T_
cosh KD

TR? X . ,

vV = —Emr(volume per unit length yielding
force per unit length)

T 2

F o= ipgaKnR“Cy V.7

2 cosh KD
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Writing in non-dimensional form (egn. I1I.4.5)

S F _ -J.KRCM .8
H %ﬂgaR cosh KD

The results of the horizontal force calculations are

given in terms of CM'

i FH cosh XD

KR

V.l A Simplified Theory

Consider the case of %D << 1. In this case, the flow is
uniform with depth, and we can replace the free surface

(mathematically) by a rigid wall.

If, in addition, we stipulate that R/D << 1, the problem
reduces to that of streaming flow past a cylinder with a

slit (Figure V.3)

U=

FIGURE V.3

FREE SURFACE REPLACED BY RIGID WALL
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Now the incident flow is simply
¢o = U r cos 6,
where U is the maximum velocity.

As before we may write the total potential as

outside cylinder: ¢° Ur cos 68(1+R?2/r?) + Azn(rL/rR)

il

V.10

inside cylinder: ¢l ALn(rR/rL) + B V.11

The exact first order flow is given by V.10. These
solutions may be compared with those shown in Figure IV.3
(page }. For this case, H(;) is equal te zero since no

wave terms exist. J(F) is again zero, and we can apply IV.37

AawmA TIT 20 km FamA A anAd R
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where Q(6) is found by comparing V.14 with V.10, V.11l and

V.1l2:

8R£n(rR/rL)
Q{8) = 2R cos § - V.15
4¢ne - Bi&n2

For zero gap, we get

du
= 2 ——
FH = 2pnR I V.16
Comparing this with Morison's formula, egn. V.6, we find

CM = 2.0. This is a classical result for a cylinder in

unsteady motion.

The force with a finite gap will be

2m r
_ du _ 8R R
F, = pR — {ZﬂR iinE = 8Ln3 f In(z=)cos B dB}

H dt L
B du 16mR
= PR 3% {2nR ¥ Tine - 8inz } v.17

where use has been made of the relaticn

Rn(rR/rL) = &n{tan 6/2)

and the integral has been integrated by parts.

From V.17 we can evaluate CM for finite values of e:

. 16
€y = 2 ~ ITnc - §In2 v.18

Table V.1 shows values of Cu computed for four values

of €. CM* shown in the table is the value of CM computed by

the computer program {Appendix F) for

R = w?R/g = .001

=l
|

= w?D/g = .01
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TABLE V.1

C,, computed via egn. V.18

M
CM* computed by program

€ CM CM*
0.0 2.00 2.0
0.001 1.524 1.52
0.01 1.333 1.33
0.10 0.930 0.93

In addition to checking the calculations of the computer
program, these results show the remarkable change in the
added mass due to the gap. For an e of only .001, the force
coefficient is reduced 25% (the added mass by 50%!). This
large drop will be discussed in more detail in the next

chapter in conjunction with the experimental results.

The gaps do not affect the vertical force in this
approximate theory. The source/sink potential is asymmetric,
as is the first order potential. The vertical force, there-
fore, is zero for all values of ¢, including e = 0. A ver-
tical force can only'result when the free surface effect is

included.

V.2 Reflection and Transmission Coefficient

Although the primary purpose of this thesis is to
examine forces on a submerged cobject, the computation of

transmission and reflection coefficients has also been
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carried out. These results may have direct engineering

application in the design of breakwaters.

We have calculated the flow potential resulting frem an

incident wave from the left with a surface profile
nO(x,t) = cos (kx-wt})

or, if we separate the time dependence as in Chapter II, we
may denote
n (x,t) = Re [n_(x)e”-*F]
o ! o

ikx IT.6
e

]

no(x)

We may write the surface profile for downstream and for

upstream from the cylinder as, respectively,

no(x) =TeltkX v.19.1.

n_(x) = RS ] o~ 1kx v.19.2

where T = transmission coefficient

&. = reflection coefficient

To compute T and® , the amplitude of the scattered wave
for upstream and downstream must be computed. The surface
elevation due to a potential, ¢(x,y,t) may be found from
linear theory {(c¢f. Newman, 1971, Chapter V)

3d(x,D,t)

. 1
n(xrt) - = E 3t

If $(x,y) is the potential outside the cylinder in non-
dimensional form and with the time dependence separated, we

can write the non-dimensional surface elevation



ni{x) = i¢(x,D) V.20

The reflection and transmission coefficients may then

be written from V.19:

T = je iKX { lim ¢(x,D) } v.21.1

. ¥-rx ’

R = MK { lim i9(x,D) - e X¥ } v.21.2
Mmoo

To evaluate li$ ¢(x,h) we may once again utilize Green's
Xroo
— >
theorem (egn. III.7). If p is a peint on the free surface
>
(x,D), and r is a point on the cylinder surface (xs,ys}, we

may write

F(B) = ¢ (F) + Aln(p /pg) + H(P)]

36, (1)
on

dR
r

518

1 - -, > 1 > >
v J ¢30(r) (plz) dﬂr - 5 J G(Dir)
C C

Taking the limit of both sides for x » + =, we obtain

lim $(3) = ie ™ + A lim H(x,D)
X+ x> V.22
+ 3¢ _(r)
1 >, 0G— 2 1 + .72 o
" 37 I d:so(r) o (p[r) dﬁr - 5T f G—(D’r) ST df.r
C C

The asymptotic form of Green's function has been intro-

duced:
cL(Z|T) = lim G(3|P)
x-ﬁ:tao
-i2n (K*v?)cosh Ky cosh Ky_
K{K2D = D + y)

v.23
ej’_lK (x"xs)

where v = w?R/g
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The value of lim H{x,D) may be found by setting, as we
oo

did in Chapter III,
> > > >y > -+
an(p /pg) + H(p) = Glploy) - Glplp) + Flo) V.24

where BL = {=1,0)

by = (1,0)

F(B) is computed numerically over the surface of the

cylinder (cf. Chapter III). Taking the limit of both sides

of egn. V.24 we find

lim H(x,p) = lim [G(x,D[-1,0) - G(x,D|1,0} + F(x,D)]
From V.23, taking (xs,ys) = (+1,0), we get, after some

algebraic reduction,

lim [G(x,D|-1,0) - G(x,D|1,0)]

w oo

_ -47 (K*-v) cosh KD sin 2K eile V.25
XK(RZD -~ D + V) '

-
FHea Jomit af Fhn) auwnt be-fannd rumerically from fhe

values of F(B) calculated in the determinaticn of H(ﬁ).

 Mhaies nra matr t.rr'ir_'i-.r:'t Craon ' = +hpnne@ﬁfog_l§mﬁf' ¢(§LD—L @vg -

X+
+iK ;
E-—l Xs lim F(x,D) = i{K%?-v2%)cosh KD ej'-le
b e f K2D - D + Vv
F(xs'ys) « [ {i cosh Kys cos B + sinh Kys s5in
] d8 V.26 ' , Cosh Xyg (ahl(xs'ys) . oh, (X g,y
K on . on
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where
(xs’ys) = (cos 8, sin 8)
hy(x_,y. ) = Re {G(xs,ys[-l,O) - G(xs,ysll,O)}
hz(xs,gs) = Im {G(x_,y |-1,0) - G(xs'ys]l,ﬂ }

J 3 .
Ty cos 853; + sin 6

]

s

We may write the reflection coefficient in terms of

integrals which must be evaluated numerically.

2_ LA
a - (K l)coshKDIJ o 1KX

2 l

iKx. coshKy
e S 3
EBEE_RﬁJ as

S(i coshRyg cosf + sinhKys)(¢so(8)
o

m .
+ iAJ oiK%s (4 coshKy_ cosé + sinhKD sin6) F(xg,v()
o]

cosh Kx ahl(xs'ys) . ahz‘xs'ys’ 41 sin 2K
S + i )]dﬂ _ —
+ A 7 an on X

where Q = KD - D + v

The first term in brackets yields the reflection

coefficient for the cylinder with no gap.

Values of R were computed by the same program used in
the force computations (Appendix F). Figures V.4 and V.5
show the results of these computations along with the experi-

mental points.
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For the sake of comparison, the reflection coefficient
is also computed using a formula derived by Mei {(1969). Mei
calculated the reflected wave by writing an integral eguation
similar to egn. III.7 and solving it by means of a Born
approximation (cf. Morse and Feshbach, V. 1I, p. 1073).

This method utilizes as a first approximation to the flow the
potential due to Rayleigh for waves over a gentle bottom
slope. This potential is then ingerted into the right-hand

side of the integral equation to yield a second approximation.

A comparison of Mei's solution with the £ = 0 case
(Figures V.5and V.6} show the errors introduced in the
assumption of small bottom slope for the case of a semi-

circular cylinder.

The results of the reflection coefficient computations
again reveal a remarkably large gap effect, The reflection
caenffizinnt _is.reduced. bv._alwost. 50% fat KD < 2.0) for

e = ,0416.

In the experiments, this corresponds to a gap width of
1/8" for a 3" cylinder. This result follows closely the
results of Tuck in his solution to the transmission of water
waves through a slit in a vertical wall (solved in Appendix
A). Tuck's solution yielded transmission coefficients as

high as .65 for a ratio of gap width to depth of submergence

of 0.05 (Figure V.7 }.
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slit width

d =
1-0 h = slit submergence
- A = wave length
' T = transmission coefficient
-3
2
iTl

AN
Ry

0 h/x > 05 prgure v.7°'0 .15

TRANSMISSION OF WAVES THROUGH A SUBMERGED SLIT.
(from Tuck, 1971)

Tuck's results have been confirmed by the exact theory
of Guiney (1971). The extraordinary transmission energy
seems to be due largely to the unrealistic assumption of

zero thickness.

In this thesis, an attempt is made to check the results
experimentally. Figures V.5 and V.6 contain data points
selected from some 60 test runs made at the M.I.T. Marine
Hydfodynamics Laboratory (see Chapter VI). Considerable scat-
ter in the data which appears to be linked to a faulty wave

probe leave the reliability of the reflection coefficient
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seem to be a definite

trend for the data to take on higher values than those pre-

dicted by the present theory.

This result would be expected
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mass of a heaving sphere to within 3% of Havelock's value).

Such solutions are exactly equivalent to the first order,
or "zerc gap", solution found in Chapter III for the two-
dimensional cylinder. There is no reason to believe that the
qualitative effects of a gap about the base perimeter of a

bottom mounted three-dimensional object would not be the same

forces will be augmented by the effects of the ga

similar to that found in the results of this the

We have already noted (in Section 1V.Z2) tha
region will experience a first order pressure in
This being true, we may make the following state

the forces on a three-dimensional object mounted
bottom.

1) The vertical force on the object will diffe
computed for no gap by an amount ranging fr
the full amount of the zero-gap force. Thi
tion is mostlv dependent on the wave period

fairly insensitive to changes in the gap wi

2) The horizontal force is augmented by an amo
dent on the wave period and the gap width.
will significantly affect the added mass of
but the effect may be less pronounced than
cylinder since the overall added mass (bloc
three—-dimensional obiject is less (.5 for a

vs. 1.0 for a cylinder).
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Generally, therefore, the most crucial implication of
this theory pertains to the vertical force. To exanine this
effect the Froude-Krylov force has been computed for a hemi-
sphere with a radius of half the water depth. The Froude-
Krylov force is that force computed assuming no scattered

wave. The pressure is therefore

ele cosh Ky

cosh XD

p(x,y,z)

which may be integrated over the surface of a hemisphere

(times the respective direction cosine) to yield the total

force.
Fr = non-dimensional force
- - 2 g [ dé[sin ¢ cos ¢ e *cosh Xy]
™ €osh KD i s /Y

V.28

where X cos 8 sin ¢

Il

¥y cos ¢

The diffracted wave potential, and the resulting force,
has also been computed for this case by Garrison. Both these
forces are displayed in Figure V.7.

To account for the inside pressure the average of the
outside pressures about the base of the hemisphere is com-

puted:

2T 2T
- 1 _ 1 iKcos®
P = 5= J p(x,0,2) d& = 50— 7D J e 46

o
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The total force, taking into account the inside pres-

sure, may be calculated from V.28 and V.,29:

FVT = FV + 1P V.30

(Note the non-dimensional radius is 1.0)

Garrison performed a series of experiments on a sub-
merged hemisphere to check his diffraction theory. Garrison
does not indicate the size of the hemisphere used in his
tests, but he does state that it was supported a distance of
1/1e" off t+he bottom of the wave tank. If the dome radius is
taken to be 4" (a reasonable size in Garrison's wave tank) ,

this corresponds to an e of .0156.

In his tests, Garrison noted "As a conseguence of the
1/16 inch clearance left between the model and channel floor
the pressure inside the model did not remain constant but

fluctuated as the waves passed."

In order to correlate his experimental results with the
diffraction theory, Garrison measured the pressures at a
point inside the dome. Under the assumption that the pres-
sure throughout the interior of the dome is the same, the
measured force was corrected by subtracting the effects of
this internal pressure (i,e., egn. V.30 solved for Fr).

These corrected results are shown in Figure V.8.

Unfortunately, the uncorrected forces and the measured
internal pressures are not available. Garrison has reported,

however, that he has been successful in using the average
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pressure about the outside base of a tank to account for
the inside pressure. Using this correction, he was able to
show excellent agreement with experiments. 'Much of this data

is proprietary.

It should be pointed out, however, that Garrison's
experiment cannot be considered conclusive. Only one wave
gage was used to measure the wave height. The gage was
placed far enough upstream to be unaffected by the scattered
wave, but any standing waves either from the beach or the
tank walls would result in inaccurate wave height measure-
ments. Also, in the case of horizontal forces, the load
cells were connected to the dome with wire line diverted
around a 5" ball bearing pulley. The pulley friction would

adversely affect the force measurements.

Figure V.9 shows the results of Garrison's horizontal
force measurements for two values of R/D (or, in Garrison's
notation, h/a). The agreement with diffraction theory is
excellent for this case, indicating that the effect of the
gap is indeed small. The gap width for this case was a
nominal 1/16". The dome was actually placed as close to the
channel bottom as physically possible, so that these results
may be considered a "zero-gap" result. Unfortunately, no

data was taken for larger gaps.
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VERTICAL FORCE ON WEMISPHERE WITH AND WITHOUT BOTTOM PRESSURES,
INCLUDING DATA FROM GARRISON (1971}
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V.4 Experiments on Two-Dimensional Shapes

Herbich and Shank (1971) conducted an extensive series
of experiments on various two-dimensional shapes, including
a cylinder mounted close to the bottom. Their predicted
forces based entirely on measured data are compared with

fravraa nradicrted hv the nresent theorv in Figqures V.10 and
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V1. EXPERIMENTAL INVESTIGATION

The theory presented in this thesis is predicated on the
validity of the assumptions of linearized potential theory,
namely, that viscous effects are negligible, that the flow is
irrotational, that the fluid is incompressiple, and that all
the dependent variables are linearly dependent on the inci-
dent wave amplitude. In addition to these constraints, it
should also be noted that the method used to derive the
source/sink strength has not been rigorously justified,
neither in this thesis nor in the literature, and may be open
to question. The question arises, therefore, as to what

exactly will be gained from model testing.

On the one hand, we may hope to duplicate the conditions
in the test facility which most closely correspond to the
assumptions of the theory, thus allowing us to judge from the
test results the actual validity of the theory in the context
of the given assumptions. On the other hand, we might choose
to duplicate to whatever extent possible the actual condi-
tions encountered during an engineering application (i.e., a
full scale tank at sea) to observe the validity of the

assumptions of linear theory themselves.

A scientist would select the first approach, and would
scale his experiments accordingly. An average engineer might
hope to perform the full scale tests so that he could have

numbers to apply to his next design. A good engineer would
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take the first approach, while at the same time examining
the phenomena excluded from the linear theory in order to

determine the scale effects.

The problem with all this, of course, is that wa are
restricted to the budget and the test facilities at hand, and
must be satisfied with that.

It should be noted, and we will discuss this in more

n - ina pa that not all of the pitfalls

I

The instruments and the methods of data reduction and

analysis are wrought with dangers and must not be neglected

in this discussion.

First we will turn to the hydrodynamic effects.

VI.l Forces on Objects in a Real Fluid

Tne total force on an object in a moving fluid may be

represented by tine formula

du 1
F=p%yatts3 pApcDUJU[ VI.1

where Ap is the area of the submerged object projected in the
direction of the flow. This is the complete form of
Morison's equation (Morison, et al, 1951}, the first part of

which was introduced in Chapter V (egn. V.6). .

The major failing of the Morison equation is that it
does not take into account the variability of the coefficients

CM and CD with time.
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Some investigators have expressed the mass coefficient

as a variable guantity. McNown and Wolf write F as

1
2

d(kU) du
3t Tael*t

pC.A U|U| VI.2

F = oV I Do

where k is the added mass.

This formulation agrees with the classic results of
Stekes on the motion of pendulums in a liguid, namely, that
tihe presence of viscosity and variable acceleration augment

the mass coefficient.

Keulegan and Carpenter (1958) have justified Morison's

formula by introducing a new coefficient, k', such that

d _ 1 4du
It (kU) = k vI.3

from which we get

CM =1 + k'

Clearly, the above expression (egn. VI.3) is subject to
doubt. Nevertheless, tne Morison equation has been shown by
experience to be useful in the prediction of forces. parti-

cularly in sinusoidal motion.

Keulegan and Carpenter attempted to answer the guestions
raised in this discussion by examining tne forces on objects

subjected to oscillatory motion.

R TN Tl it ~- S - gr_:*‘:fn-t;&‘-iﬁu-‘%:L_ﬁ:‘t:;‘éi;?'ré:ﬁr‘}ﬂ,ﬁh.‘;:-t:,-, . }?.Rm:'-gﬁg-J :ﬁ‘.ﬁi‘mﬂn r!:i:‘r}de-d Share... .

since their results lead to a justification of linear theory

in relation to the present thesis.
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Consider the forces on an object in a velocity field
where U(t), the velocity, is
u(t) = —Um cos wt
If R is a characteristic length of the body (radius of a
cylinder), the important physical parameters of the problem
become
F force {dependent variable)
w circular frequency of motion
R length scale
U velocity
) fluid density

\ fluid kinematic viscosity

Keulegan and Carpenter have arranged these parameters in

non-dimensional units to arrive at the functional eguation

F e u,T UmR) e
pU%R "R " v '
where 6B =wt
UmT/R = "periocd parameter"”
_ _ - __."_hll_RflL:t,Hnnnrﬂiie"nnmPu%?g Vs s ANEY denr —tir b i e
2 flow from ’ Using the fact that F is periodic and that
left [i.e., . left to right is the reverse of that from right
F{(8) = «-F(8 + m)], the force may be written
- A, sin 0 = A, sin 30 + A_ sin 58
pUéR 1 3 5

VI.5 + Bl cos 6 + B3 cos 38 + ...
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wnere the coefficients retain the dependence on UmT/R and

UmR/v but are now constant in time.
Morison's eguation may be written

F_ VCMUJ cin o - AOCD
U2R U R R
m m

|cos 6| cos 8
This can be expanded by noting that
lcos 8| cos 8 = a_ + a; cos § + a, cos 26 + ...
0 1 2
where a, = 0 n even

_ n+l/2 8
n (-1) nnz=4) n odd

1+
|

Then we have

m:AlS:Lne-!-A:;s;Ln 3B+A5 sin 56 + ...

L] 3
+ B, |cos 8| cos 6 + By cos 38 + ...

]
where Bl = Bl/al

B. = B k-
3=By -3 B

VI.é

VI.7

Comparing VI.6 and VI.7, the following relationships may

be established for CM and CD.
UmT
CM{B) = 7R [A1 + A3 + A5 + 2(A3+A5) cos 20

+ 2A5 cos 49 + ...]

VI.8'1
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1 2 1 § ] ]
CD(G) = —ZBl + — [Z(BB—BS) + 4(B5-B3) cos 28
|cos @] _
1
- 435 cos 40 + ...] : vi.8.2
If CM and CD are constant, An and Bn become zero for all

n > 1. Keulegan and Carpenter used this fact to define the

U TA
_ o m71
CM = — 7R vIi.9.1
O _ _an
CD— 2Bl v1.9.2

They measured forces on cylinders in a slosh tank,
Fourier analyzed the force output to obtain An'Bn from VI.5,

and plotted Cg,Cg and the difference function

R = A3 sin 36 + A5 sin 59 + B3 cos 36 + B5 cos 506 Vvi.1l0

In this way Keulegan and Carpenter were able to assess
the variability of CM and CD with time and determine the
relative importance of Reynold's number and the period

parameter on the coefficients An' Bn'

Working with cylinders ranging in diameter from .5 inches
to 3.0 inches, they were able to conclude that the drag and
inertial coefficients were effectively constant throughout

the phase of the motion as long as UmT/R was sufficiently

eswe w1 Ly Thegrtval cvariation,in rhe valngg nf € AN Lo e o

JmT/R less than 20. There (VI.8) is negligible (<5%) fo

on Reynolds numoer. appears to be little depender
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This phenomenon can be explained by a simple physical
explanation. The value UmT/R indicates the ratioc of the
distance traveled by a particle of fluid during a cycle to

the radius of the cylinder:

UmT/R = mk/R

where 2 is the excursion distance of a fluid particle. Thus
if UmT/R = 27, a fluid particle will just traverse the full
diameter of the cylinder. Photographs of the flow indicate
that no separation occurs for such small motion, and except
for the effect of surface friction, one would expect poten-
tial theory (wnich predicts a constant Cy and Cp = 0) to be

valid.

I+ should be noted ilere that the results for a cylinder
(as found by Keulegan and Carpenter) are not entirely suffi-
cient to determine the relative real fluid effects for the
submerged cylinder with a gap. First of all, no account was
taken in Keulegan and Carpenter's work of tihe free surface
effect (their models were placed in a deep tank). This will
be discussed in the next section. Secondly, and most impor-
tantly, the flow through the gaps is more characteristic of

+he flow _past a flat plate than flow past a cylinder. In

-t - mmm= = = L5 = = =

B

iy shedding and flow separation ) )
this case the occurrence of

. photograpns of flow past flat . ) .
is almost inevitable. In f&

wrpenter indicate that eddies ‘
plates taken by Keulegan anc

12 onset of motion. This is , .
form almost immediately upor



125.

indeed the case for the gap flow as well, as may be observed
from photographs of dye streaks in the area of the cylinder

(Plates 7 through 10}). Plate 10 shows the formation of an

eddy for UmT/R = ,092,

The drag coefficient for plates is considerably larger
than that for cylinders. CD takes on values of greater than
10, for example, for a flat plate (flow incident) at small
values of UmT/R (R for the plate is taken as the plate
length). We may be comforted by the fact, however, that even
at such large values of CD' the total drag force is still

much less than the total inertial force. 1If, for example,

(cf. Wiegel, 1964, Chapter 11)

C.,V mC, R
M = M - |

CDAOa ZCDa

we may neglect drag forces entirely. Taking R = 3.0,

a=20.1", C, = 2.0 and CD = 5.0 we get

M

nCMR

2CDa

= 19

This ratio is probably much larger since the selection
of CD = 5.0 seems unrealistically large. The results pre-
sented in Appendix G indicate that less than 10% of the total

force comes from drag.
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We have stated that, for UmT/R small, we may adopt the

Morison equation for the description of forces on the sub-

merged cylinder. This statement should be qualified for the

case of our cylinder with a gap. Equation VI.6 cannot easily

be applied to the vertical forces since fluid accelerations

AresscTSmasd ihiEsfhesversicat lasiediionsicia paETairogiimlane tha

vertical force is due primarily to the hydrodynamic head
associated wigh the wave crest passing over the object. It
is difficult to calculate the "drag" in the vertical direc-
tion, although one interpretation might be that it consists
of the force due to the %‘-pU2 pressure from Bernoulli's
equation. In this case the "drag" would be in phase with the
pressure force. At any rate, no attempt is made here to

associate a mass coefficient with the vertical force.

We have already mentioned that the Morison equation, and
Keulegan and Carpenter's analysis, did not account for the
free surface effect. Specifically, it should be ncted that
a component of the inertial force will arise from the scat-
tered waves. These waves are generated when a large amount
of the flow from the incident waves is diverted, generating
outwardly progressing waves. The scattered waves, therefore,
produce pressures in phase with the incident wave velocity
(since this is when the most fluid is diverted). A modifica-
tion of Morison's formula to take this inte account would

appear as
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du 1
F=C g *53 QAOCDUlUf + CU VI. 11
For our purposes, however, it is not necessary to use
the expression in this form. Instead, we will treat C, and U
in Morison's equation as complex quantities and take the real

part of the expression to obtain the phase of the inertial

force, i.e.
B c.U
-1 2
phase = tan o J07dE

We also wish to non-dimensionalize with respect to the

incident wave amplitude rather than the velocity. Write the

incident wave

1* -igt
nin(x,t) = Re [ale e

iK.x . .
+ a,e 2" gmiaut | ase 33wt ] VI.12

where a; @,; a3 ... are complex numbers representing

the wave amplitude of the respective Fourier

component of the wave.
K is the wave number corresponding to the
frequency nw, i.e., the solution to
K, tanh K D = n’w?/g
In the following discussion, we shall adopt the notation
used previously, i.e., 8 = wt. Also, as in the previous

chapters the real part of the expressions will be assumed the

physical quantity of interest.
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The horizontal and vertical forces, and the moment on

the object may be written respectively,

N :
_ -1iné
Fy = | Hpe VI.13.1
n=1
N .
F_= J v.e *n® VI.13.2
v n
n=1
N .
M= ) me tP° VI.13.3
n
n=1

The reflection coefficient of the beach in the wave tank
proved to reach values of ,19. Thus it is necessary to
account for waves impinging on the object from both direc-

tions. Figure VI.l shows the situation. The incident waves

—namiy —
nl(x,t) nz(x.t)
-— —
n3(x.t) n4(x,t)

' FIGURE VI.l
ASYMPTOTIC FORM OF WAVES IN TANK

coming from tne left and the right are both reflected and

transmitted by the c¢ylinder., We may write
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N : .
iKpx _-ind
nq{x,t) = nzl aj, © e VI.14.1
n,(x,t} = § a, e tKnX  -in8 VI.14.2
2 ’ n=1 2n - -
N .
n.{x,t) = ]} a g k¥nX o-ind VI.14.3
3 nel 3n
N . .
nx,t) = } a, efn¥e in® VI.14.4
4 nal in

Let us define the respective reflection and transmission

coefficients as

RLn = a3n/a1n (with ayn = 0) VI.1l5.1
TLn = a4n/a1n (with don 0} vIi.l5.2
Ren = a4n/a2n (with ai, = 0} Vi.l5.3
Ten = é3n/a2n (with ay, = 0) VI.15.4

These definitions are consistent with linear theory,
which assumes no harmonic generation by the obstacle or
through shallow water effects (see, e.g., remarks by C. C.
Mei at the M.I.T. Hydrodynamics Laboratory seminar of Septem-
ber 27, 1971). It should be pointed out that some non-
linearities are to be expected, particularly for the high
frequency waves which are quite steep. In these cases the
representation of the coefficients above would have to

include cross-reflection and cross-transmission coefficients,
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for example,

{(with nz(x,t) =0, a;; = 0, i # n)

The generation (or amplification} of certain harmonics
was opserved in a few cases. This appeared as 2nd harmonic
"noise" superposed on tie long waves downstream from the
object. No attempt has been made to analyze this harmonic
distortion, but the complete record of wave harmonics is
included in Appendix G for the use of anyone interested in

pursuing that study.

In the context of linear theory, therefore, we take note

of the fact that

RRn = RLn VI.1l6.1

TLn = TRn VI.lé.2

where Eﬁn denotes the complex conjugate of RLn‘

The proof of VI.1l6 is given by Newman (1965) following

the method of Kreisel (1949).

VI.2.1 Horizontal Forces

Given the incident waves nl(x,t) and nz(x,t) from vI.14,

the velocity potential may be written (in dimensional form):
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¢(x,y,t) = ¢;(x,¥,t) + &,{x,y,t)
[a. e + a2 e —in®

. N
- _ ig n n
w Zl cosh KnD cosh Knye

n

vI.1l7

In Morison's formula, take U to be the horizontal

velocity at the sea bed (the axis of the cylinder) so that

U(t) = 5= ©(0,0,t)

2, - a,_] ,
1n 2n ~in@
cosh Kn D Kne vI.18

=4
w

n

Il 12

1
from which we may identify

_ gKn(aln - aZn)
n w cosh KnD

The acceleration may similarly be written

ol

U

au(t) _ § n _-ind
dt L d vVIi.1l9
n=1
du
n._ _ .
3 = 1ann

Now Morison's egquation may be written
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. 2 N " -iné6
Folt) = - iﬂ%ﬂﬁ_ 1 nCyn¥pn (310 25n) €
n=1 cosh K D
n
- ~inB -iné

+ pg?K § CDnKn(aln_‘_:lZH)e g CDnKn(aln aZn)e

w? cosh K_D c¢osn K D

n=1 n n=1l

N . , nC, K (a, -a,_) s

- z ( 1png) [ Mn"n' 1n 2n | e in® VI. 20

cosh X_.D
n

n=1

where the drag coefficient has been assumed to be zero, as it

snould for

7 = 2
Um? _ 27g //g Kn(aln a2n) <5
—_—= .
R weR /24 coshzk D
An examination of the test records, Appendix , reveals

that tnis is indeed the case.
Turning to VI.20 we can identify the terms of VI.13 as

nCMnKn(aln-aZn)

cosh K D
n

R

{ 1

from which
12Hn

= z -
Mn pgTR nKn(aln azn)

c vI.21

This value of Cyn is computed from the reduced test data.
Its value and phase for n = 1 is given for tests 9-17 in
Table VI.3. Other harmonic values may be found in the

analysis program output listed in Appendix G,
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VI.2.2 Vertical Forces

The measured values of the vertical force were
normalized with respect to the superposed incident wave
amplitudes over the center of the cylinder. Using the nor-

malization of II.4.5, the normalized force may be written

_ N -ine
Fy = ) Ve
n=1
= 2Vn vVi.23

Vn wpgR(aln+a2n)

Tnese values are reproduced for the first harmonic in
Table VI.4 for higher harmonics in the computer listings,

Appendix G.

VI.2.3 Moments

The theoretical value of the moment about the axis of
the cylinder, for linear theory, is zero. This is the case
since all pressures act normal to the cylinder surface and
therefore act along a radius line. All forces are directed
through the axis of the cylinder which therefore cannot

experience a moment.

Figure VI.2 shows the schematic configuration of the

cylinder, its supporting struts and the load cells.

The moment about the point at which the line of action

of the horizontal force intersects tne vertical centerline is

M = (F +F,) (v =8) + F4(y2—A) VI.23
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)
M H Ay \

3

FIGURE VI.2

SCHEMATIC OF CYLINDER AND LOAD CELLS

where A = the distance abkove the bottom through which the
horizontal force acts.
Notice that the two terms of VI.23 will generally be of
opposite sign but nearly equal magnitude. M is expected to
be relatively small (theoretically zero) so the percentage

error in M for small errors in F F, and F, will be large.

1’ "2 4
Taking the moment about the point (0,yl) yields

M= F,(y,-y;) + F,ly;-4) VI. 24
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In this case we have less sensitivity of M to numerical

errcrs in the terms on the right.

The moment is normalized with respect to the incident

wave from the left:

M
= n

Mn = EpﬂRzaln VI.25

The calculation of these quantities from the test data

will be discussed in Section VI.d.

VI.3 Experimental Test Setup

Figure VI.3 shows a schematic drawing of the test
facilities including the wave paddle, wave probes, dyna-
mometer and cylindrical model. Plate 1 shows the entire test
setup, including the instrumentation rack. Flate 2 shows the
model in posiﬁion for a test. Plate 3 shows the cylinder out
of water. Plate 4 shows a closeup of the dynamometer, includ-
ing force blocks 3 and 5 (in the foreground), the lcad carry-
ing members and the stiffening strip for force block #1 (in
the lower right). Plate 5 is a view of the wavemaker from
above, and Plate 6 shows a view of the waterline of the tank

looking upstream from the position of the model.

The equipment for this test is described in a thesis by

Kern (1971). The following will describe the main features

of tue eqguipment.
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PLATE 1
EXPERIMENTAL SET UP INCLUDING WAVE

TANK AND INSTRUMENTATION

PLATE 2

SEM|~- CIRCULAR CYLINDER SHOWN
IN TEST POSITION

137.
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PLATE 3
CYLINDER SHOWN ATTACHEDO TO
3-COMPONENT DYNAMOMETER

.

PLATE 4
CLOSE-UP OF DYNAMOMETER
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VvI.3.1 The Wave Tank

The wave tank was designed by Mr. Dean Lewis of the
Marine Hydrodynamics Labeoratory under the direction of Pro-
fessor Jerome Milgram. It is constructed of aluminum and
measures sixteen feet long by one foot wide by two feet deep.
Windows in the ‘sides of the tank aid in flow visualization
(Plate 2). The side walls of the tank are parallel to

within .01 inch.

Since the two-foot depth made tests on bottom structures
in shallow and intermediate depth waves difficult, a special
aluminum platform was constructed to act as a ground plane
raising the effective bottom of the tank 14 inches. Titis
platform extends tae entire length of the wave tank {(exclud-
ing tne beacn). It is constructed oy bolting two 1/4"
aluminum plates together with 1/4" plywood sandwiched between
and extending 1/16" beyond tne side edges (to protect the
anodized surface of the wave tank). Plexiglass legs support
the structure of this bottom. The legs were milled in order

to insure a lewvel surface.

A 12" x 12" x 3/4" aluminum plate pivoting about the
raised bottom was installed in the tank to act as the wave

paddle.

VI.3.2 The Wave Absorbing Beach

The final 5 feet of the wave tank is filled with tightly

compressed rubberized horse hair mattress material. The
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intersection of the beach with the water line has a gradual
slope falling off sharply below the water line. The reflec-
tion coefficient from the beach is highly dependent on the
wave number. Figure VI.4 shows values of the reflection
CoEFElcrents crrculia e o8 :!a."l:- AL !cg‘a]] far a .umher. of fasks.
The coefficient peaks at about .20 for KD = .90. The wave-
length corresponding to XD = .90 of 2.9 feet corresponds
roughly to the distance between the cylinder and the beach,

indicating that resonance might possibly be the source cf the

targe reflection coefficients for these wavelengths.

VI.3.3 The Dynamometer

Porces on the cylinder are measured by mecans of five
2 1b. Schaevitz inductance type load cells connected by rigid
wires to a frame onto which are attacned the supporting struts
for the cylinder. The load cells are attached to a rigid
frame which is clamped to the wave tank during testing. The
configuration of the load cells, the rigid connecting wire
rods, and the cylinder support frame is such that the hori-
zontal and vertical loads are transmitted separately to load
mells 1, 2, 4 {horizontal) and 3, 5 {(vertical). Figure VI.l

saows tnis schematically.

4 force acecing along the axis of any load cell causes
the territe core of an inductor to deflect slightly, altering

tne inductance in an LC circuit and thus the frequency in a

nigh frequency oscillator circuit. These high frequency
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signal fluctuations are converted to dc voltages for data
acquisition. The output of the signal conditioning equipment
is a dc voltage linearly proportional to the force acting on

the load cell up to approximately 2 pounds of force.

The cylinder, its supporting frame, and the load cells
comprise a linear mass spring system (neglecting non-linear
hydrodynamic drag). A horizontal force of 1 lb. at the
center of the cylinder caused a net deflection of the cylin-
der of approximately .20 incnes. To minimize this deflec-
tion, steel cantilevered deflection arms were rigged to
stiffen the load cells measuring horizontal forces (load
cells 1, 2 and 4 - see Plates 2, 3 and 4). With the stif-
fened load cells the deflection of the cylinder was reduced

to .06 incues/lb.

Under typical conditions, the cylinder would experience
forces of .3-.5 lbs. The velocity of the cylinder under

these conditions would reach a maximum of (27 x .03) =

.188 incn/sec. as compared with the maximum particle velocity

of the water of approximately 2.0 inch/sec.

The natural period of vibration of the cylinder out of
water was observed to be .0575 sec. for horizontal motion.

The vertical motion was critically damped.

Vi.3.4 The Wave Probes

Four distinct wave components exist in the far field

(away from the cylinder, the beach or the wavemaker):
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nl(x,t), n2(x,t), n3(x,t) and n,(x,t). To establish the
height and phase of each component four simultaneous measure-
ments at different positions are necessary. To accomplish
this, four capacitance type wave height sensors were placed

4
in the tank, two upstream and two downstream. The sensors
consist of a conducting wire surrounded by plastic insulation
vertically immersea in the liquid. The water acts as a.
grounded surface, so that a capacitance is set up between it
and tne conducting wire which is connected in an L-C oscil-
lator circuit. The frequency of the L-C circuit comprising
tiie wave probe capacitance modulates a known fixed frequency
signal. The resultant FM sigynal is demodulated to give a dc
signal output which is linearly proportional to the wave
height.

Normally thne resolution of the wave probes is reduced by
the effects of surface tensien. A miniscus layer of water
attaches itself to the probe as the waves travel cver, thus
distorting the true reading of the probe. To diminish this
effect, each probe is mounted on the cone of a small radio
loud speaker which is driven by a 60 Hz. signal from a power
supply. The probes are then vibrated vertically with an
amplitude of approximately 1/16", or roughly the amplitude of
tiile miniscus, which will alternately ride up and down the
wave probe 60 times a secoend. Taking the average of the 60

fiz. signal on the output taus yields the correct wave height

measuremant.
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The“wavé:prdbésiprdVed*Sensitivé’to the proximity of
metal objects. In the tank, the capacitance between the wave
probes'and the side of the tank itself proved a bothersome
component, since the output would vary depending on the
relative position of the probe to the windows. Care was
taken to calibrate the érobes in their actual test position

. so that no calibration errors would result from a zero-shift.

Another problem was encountered with the oscillator
circuits. In particular, one circuit became unstable during
the testing and caused severe jumps in the cutput for one
wave probe. After some unsuccessful attempts to interchange
 tne bad oscillator, the experiments were run with the ques-
tionable wave probe in position 3 (see Figure VI.2) where it
would have the least effect on the incident wave measurements.
With the exception of this probe, the calibration of the
wave probes proved repeatable to within 5%, which figure may
be taken as the accuracy of the incident wave amplitude

measurements.

VI.3.5 Analog Signal Processing

If the calibration coefficient of the ith force block is
'ki lb./volt, we may write the forces and moment on the

cylinder as

FH = klvl + k2v2 + k4v4 VI.26.1

v k3v3 + k5v5 Vi.26.2

e |
Il

Moo= k,V,(y,myp) + Py =8) VI.26.3
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where v, represents the VO;t@gQ-QutPQ$w9§5@Q§GQT2R§ASQQA
conditioner. In order to utilize tihese signals, the .signals
are filtered and added by means of separate operational. .
amplifier circuits. These circuits are shown schematically
in Figure VI.5. The inputs are the voltages Vir Vor Var Y,
and Ve respectively. The outputs correspond (in volts) tol_
the quantities CyF., CyFy and Cm[M - FH(yl-A)] respectively.

C C,, and C may be adjusted by altering the gain of the

H 7V
operational amplifier circuits. The outputs of each circuit

may be written

R.. R {l1-iR,wC,) Vv v v
v, o= L7 - 27 - (L + 24+ 4 VI.27.1
Ry (1#RZ02C;%) Ry R, Ry
R, {(1-iR_wC.,) v v
v, = 8 282 f [ =2+ 23 VI.27.2
1+ REwZC3 R, Ry

v RgRy o (1-iRguC,) (1-iR, juC )
v = 479713 3Y~3 13%%4 VI.27.3

2,.2~2 2 212
R6(1+R9w c3) (1+Rl3w C4)

where the signals are considered to be monochromatically

oscillatory:

For the case of a general periodic signal, each Fourier
component will experience a different gain. From VI.Z26 we

note that the resistances R1~R5 must be selected so that

v v
2 4

+ == 4+ — = Kk

1 R2 R4 1

M| <
-]
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Figure VI.5

ANALOG PROCESSING CIRCUITS FOR FORCES AND MOMENT
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5

V3

\%
R3 R5 5
The RC circuits served as an initial low pass filter for

the signals from the instruments. Values of RC were chosen

to attenuate effectively all signals over 120 Hz. For a

typical value of RC = .045, the attenuation at 60 Hz. is
60%, at 120 dz. 99%. Similar circuits for amplifying the

wave probes were designed to give similar attenuation.

The output of the Op. Amp. was fed into a hybrid EAI 680
analog/IBM 1130 digital computer system at the M.I.T. Mechan-
ical Engineering Computer Facility. An existing program,
ADCNV, was used to sample the signals at a fixed sample rate,
place the sampled (digitized) data on the 1130's disk memory

and punch the stored data on IBM cards for further processing.

All tests were digitizea using a sample rate of 250 Hz.
This prevented aliasing of signals up to 125 Hz. (signals
above 120 Hz. are filtered in the Op. Amp. circuits).

Digital filtering will be discussed in VI.7.

VI.3.6 The Test Section

The cylinders were fabricated from 1/8" thick plexiglass
tubing 4" and 6" in diameter. To connect the cylinder (half-
tube) to the dynamometer frame two 3/8" holes were tapped in
the upper surface and 3/8" rods inserted to serve as struts
(see Plates 3 and 4). The force on the 3/8" rods is negli-

gible compared to the force on the cylinder (tests showed the
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force on the rods less than 0.5% of the cylinder forces).

The 3" radius cylinder was used in tests 9-16, 18 and

19. The 2" cylinder was used in test 17.

VI.4 Instrument Calibration

Calibration was performed by applying a known physical
input to each sensor and recording the output (in volts) of
the appropriate circuit. The voltage readings were taken on
a Hewlett-Packard two-channel recording oscillograph.
Periodic checké were made to insure that the voltages read
by the oscillograph were equal to those reaching the digitiz-

ing system at the Mechanical Engineering Computer.

VI. 4.1 Wave Probe Calibration

The wave probes were calibrated by adjusting the output
for the probes in still water to be zero and raising the
probe carriages on metal strips-of 1/8" and 1/4" dimensioné.
The voltage ciange recorded indicated the calibration

coefficient for eacn probe.

Tables VI.l and VI.2 summarize tne overall calibration

coefficients and positions of the wave probes for the 10 runs.

all probe signals were amplified in operational ampli-

fier circuits possessing the following transfer function:

R v, (1-iR_ _, wC)
v - out in out VI. 28

out 2 2m2
Rinfl+Routw c)
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Table VI.1

WAVE PROBE POSITION

- WAVE PROBE CALIBRATION

Calibration Coefficients (volts per inch):

Runs 9~-17 18,19
Cwl -21.6 -20.8
C -26.0 -16.8

w2
C -17.2 -50.0
w3
C 030.4 -30.3

wi

T *1 R X3 X4

Run (inches) (inches) (inches) (inches)
9 -42.250 -36.875 23.375 28.125
10 " " " "

11 " " " "

12 “ " 28.125 32.875
13 " " 23.375 28.125
14 " " " "

15 " " " v

1% " " 28.125 32.875
17 " " " "

18 - - - -

19 - - - -

Table VI.2
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If Ai is the amplitude of a wave of frequency w at
probe i, from VI.28 we can see that its value may be written
vout
A, = (1 + i R wC) VI.29

1 Cwi out

For probes 1, 2 and 4

c .022

Rout

and for probe 3

RoutC = .044,

VI.4.2 Dynamometer Calibration

Bach force block was calibrated individually by applying
calibration weights of .5 1b. and 1 1lb. The gain of the
signal conditioning equipment was adjusted so that load cells
1, 2 and 4 (horizontal load) each yielded (as close as pos-
sible) 1 volt/lb. Load cells 3-and 5 were adjusted to give
5 volts/lb. With the precise coefficients determined for
each lcoad cell, the values of Rl, RZ' R3, R4 and R5 were

determined. For all tests, the following values were set:

R, = 20,000 @ Ry, = 50,000 @
R, = 19,500 2 Ry, = 15,500 2

Ry = 20,000 © R, = 100,000 &

R, = 50,000 2

Rg = 50,000 2 c, = .22 pfd

R = 100,000°Q C, = .22 ufd

R, = {see Table VI.3) C, = .22 nfd

Ry = 500,000 9% c, = .22 ufd

Rg = 150,000 & *Rg = 200,000 & for test 9.1
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acceptable signal level.

and CH for each

test run.
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was adjusted for various test runs to maintain an

Table VI.3 shows the values of R7

The values of CV and Cm were

CV = 20.0 volts/lb. (test 9.1)
= 50.0 volts/lb. (all other tests)
Chp = -1.50 volts/ft. 1b. (all tests)
Table VI.3
HORIZONTAL FORCE CALIBRATION DATA
Run | R, (2 x 107%) ¢, (volts/1b.) Run |R, (R x 10 %) |cylvolts/1n.)
9.1 200 -20.0 15.1 200 -20.0
9,2 200 -20.0 15.2 200 -20.0
9.3 400 -40.0 15.3 200 -20.0
9.4 100 -40.0 15.4 200 -20.0
9.5 400 -40.0 :
9.6 400 -40.0 16.1 200 -20.0
9.7 400 -40.0 16.2 200 -20.0
16.3 200 -20.0
10.2 200 ~20.0 16.4 500 -40.0
10.3 200 -20.0
10.4 400 -40.0 17.1 400 -40.0
10.5 400 -40.0. 17.2 400 -40.0
10.6 400 -40.0 17.3 400 ~40.0
10.7 400 ~40.0 17.4 400 -40.0
10.8 200 -20.0 17.5 600 -60.0
17.6 600 ~60.0
11.1 200 -20.0
11.2 200 -20.0 18.1 200 -20.0
11.3 200 -20.0 18.2 200 -20.0
11.4 100 -40.0 18.3 200 -20.0
18.4 200 -20.0
12.1 200 -20.0 18.5 200 -20.0
12.2 200 ~-20.0 18.6 200 -20.0
12.3 200 -20.0 18.7 200 -20.0
12.4 400 ~40.0
19.1 200 -20.0
13.1 200 -20.0 19.2 200 -20.0
13.2 200 -20.0 13.3 200 -20.0
13.3 200 -20.0 19.4 200 -20.0
13.4 400 -40.0 19.5 200 -20.0
13.5 400 -40.0 19.6 200 -20.0
14.1 200 -20.0
14.2 200 -20.0
14.3 200 -20.0
14,4 200 ~20.0
14.5 400 ~40.0
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VI.5 Signal Processing and Analysis

Once the signals have passed through the analog circuits
the EAI/IBM digitizing system and finally punched on cards,
the problem remains to determine the non-dimensionalized
forces, moment, reflection coefficients and any other param-
eters of interest. 1In order to find all the desired informa-
tion the digitized data must be Fourier analyzed to determine
the amplitudes of the first several Fourier components. The
digitized data contains frequency components up to 120 Hz.
Since the highest fregquency water wave we will investigate
has a fundamental frequency of approximately 2 Hz., we may
ignore all frequencies above 10 Hz. (5th harmonic) or so. In
order to avoid aliasing, the Fourier analysis must use very
small (less than 1/240 sec. to eliminate 120 Hz. aliasing}
time steps for inteyration, or, as an alternative, the
digital data may be put through a digital low pass filter.
This latter approach was used hére (see Appendix F for de-

tails of the numerical filter).

After passing through the low pass filter, the data may
be Fourier analyzed using relatively large time steps. The
filtered data is in the form of a matrix, Yij' with i corre-
sponding to a time coordinate. 7J=0 is arbitrarily taken to
correspond to t=0, j=N to t=T. The channels are numbered

as follows:
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Channel
1 Output for wave probe 1
2 Qutput for wave probe 2
3 output for wave probe 3
4 Output for wave probe 4
5' Qutput for FH (horizontal force)
6 Output for M (moment)
7 Output for FV (vertical force)

Given the filtered data yij and the fundamental fre-
quency w, = 27/T, the Fourier components of the signals may

easily be computed:

T

y

At
T 1

S, = exp (inmwlT) VI.28

in im

Il T~ 2

m

The Fourier components must still be converted to
physical units. 1In order to reproduce the original physical
gquantities, it is not only necessary to utilize the static
calibration coefficients Cl. C2, etc., but it is also neces-
sary to recognize that the anlog filters and amplifiers con-
tain frequency dependent characteristics. To retrieve the
initial input, therefore, it is necessary to correct for the

effect of the operational amplifier circuits on the signal.

Equation VI.7 shows this correction for the wave probe

channels:

3.
in .
A, = —~ (1 + iR
in Cwi out

nmlb) vI.29



155,

The equivalent expressions for the forces and moment

follow from VI.27

S
_ . 5n .
A5n = HEE (1 + 1R7nwcl) VI.30.1
Sﬁn . .
A6n = wE;v(l + lenwca)(l + 1R13QC4) vI.30.2
S?n
A, = _E; (1 + 1R8nmC2) VI'30f3

where Ain represents the nth Fourier component of the ith

channel output (in correct units) corrected for the analog

filtering.

VI.5.1 Dynamic Effects

We have seen that the dynamometer system with the cylin-
der attached represents a linear mass/spring system. Figure
VI.6 shows a typical response curve for an impulsive loading

applied to the cylinder in a horizontal direction. The

'

i
1

{;

I

B

g

A
‘i
T

A 1] (see

FIGURE VI. &6

FH RESPONSE FOR IMPULSIVE LOAD
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amplitude of the deflection of the load cells is therefore
influenced by the resonant interaction of the cylinder/
dynamometer system with the periodic (unknown) forcing func-
tion. Ideally this effect would be eliminated by making the
system infinitely stiff. Unfortunately, an infinitely stiff
system would not deflect at all, and no voltages would be

read.

The compromise reached here consisted of the inclusion
of the stiffening bars on load cells 1, 2 and 4 to reduce the
natural period of the norizontal motion to .2 sec. (see
Section VI.5). From the theory of single degree of freedom
linear system response, the amplitude of the output signal
for a given sinusoidal input may be written (Den Hartog,

1956)

]
"
0]

y(t)
(x/ko)é‘ix

Y(1-8%)* + (2ZB}*

where X is the input amplitude {complex)

1
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- i¥in - W T’
Bin = Ain e Y (1 Bin) + (2§i8in) VvI.31
th ' N lth
where Bin = the n Fouri:r component of the 1 channel
signal (in physical units) corrected for
analog filtering and for the dynamic response
of the dynamometer system
Bin - nml/wni
W= natural circular frequency of motion for the
cylinder in the ith channel mode
g, = damping ratio in the ith channel mode
_, 2.8, '
v, = tan T [ ;=gFD ]
in 1 Bin

B:n represents the Fourier component of the physical

gquantity of interest. We may write, for example,
> -inwt
nyéxg,t) + ny(x;,t) = Re { nzl B, € } VI.32

where only the first five harmoniecs have been included.

VI.5.2 Added Mass Computations from System Vibrations

Before turning to the computations for the incident and
reflected waves, we will look at the vibrations of the system

from the standpoint of calculating the added mass of the

cylinder.

As was mentionedlin Section VI.5, the natural period of
the system was increased from .0575 sec. for the cylinder out
of water to approximately .2 sec. when the cylinder is

immersed {considering only the horizontal motion).
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It is pessible to calculate the added mass based on
these cbservations. The following discussion will treat m as
the effective mass of the cylinder and k as the effective

spring constant of the cylinder. Thus,

T = 27 /m/k. VI.33

n

For the cylinder out of water,

Tn = .0575 sec.

k = 200 1b./ft. (measured)
therefore

m= .0168 1lb.

We have used VI.33 under the assumption that the damping
ratio is gzero. Figure VI.5 shows a typical curve of the free
vibrations of the cylinder. This case is typical of the
vibrations, and as can be seen, is quite lightly damped. The
largest damping ratio observed during the tests was .0285.

We may continue this discussion based on an undamped oscilla-
tor, keeping in mind only the fact that the damping must be

included for forced motion near resonance.

Continuing with the discussion of the added mass, we may

write for the cylinder immersed in water

Tn = 271 ¥ (m+m") /k VI.34
where m' = displaced plus added mass of cylinder due to

motion of the water and wave generation.
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In order to compute m' it is necessary to compute the

m' = k(Tn/2n)2 - ﬁ

159.

VI.35

gap flow problem for the case of an oscillating cylinder.

This problem is related to the wave force problem via the

Haskind's relations.

problem, see Appendix E.

For the scoluticn to the radiation

The trend of the data may be seen from the following

tabulations by gap width:

e (inches) m' {meas.) m(comp.)

6.0 incines

D = 5.0 inches

e (inches) m' (meas.) m{comp.}

1/8
1/4
3/8
1/2

The calculaticns of the added mass correlate-with the

trend of the data, but appear to be lower by approximately

.287
.244

.228

.218
172

.162

1/8
1/4
3/8
1/2

. 275 .168
n240 -
.152 .152

25%. This fact could easily be attributed to an error in the

measurement of the spring constant k (the value of k was

arrived at by measuring a .06" deflection with a ruler!).

..-As_a_..rheck..on.fhe. _commuter_proaram, . the dampina coef-

ficients computed for the oscillating cylinder were used to

calculate CM for the same frequency using equation E.18.

M

was also calculated by the wave force method of program MAIN

(Appendix F)

checked these values agreed to within 5%.

and the two values compared.

In all cases
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VI.5.3 Force Computations

Given Bin’ i = 1-4, we may now calculate the four wave
functions aj v i = 1-4. To do this, write the wave amp litude
for each of tne four positions as the sum of the respective

components (referring to equations VI.14):

n(xl.t) = nl(xl,t} + n3(xl,t)

B e-lnmt
1n

il
I e~1tn

1

iKnXl 1 . _
e lKnAl]e inwt

I

| =140
ol

|_|

bo
V]

n=1 * ?3n

where w = 2n/T

This yields

g TrnXl vI.37.1

iKnxl + a2
n

Bln T 31n®

Similar equations for eacn position yield

an = alnelKnx2 + a3ne_lhnxz vI.37.2
By, = a, e ¥ 4 azne"lﬂﬂx3 vI.37.3
B4n = a4nelh“x4 + a2ne_lK“X4 VI.37.4

Solving VI.37 for aqpr @0 834 and 4sn by straight-

forward algebraic means yields the following solution:

(B e N2 - by -
aj, = VvI.38.1
2 sin Kpd)

e—iKnxl)
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_ 1(B2 eiKnXl _ Bl eiKnXZ)
d3pn < 3 2 VI.38.2
2 gin Knﬁl
. —iKnXl; _ “‘iKnXB
a, = + B30 ®4n° ) VI.38.3
2n 2 sin Knbz * y
. iKgx3y _ 1Kpxy4
a, = * Ban® 23n° ) v1.38.4
4n 2 sin Knﬁz * *
where &l = x2 - xl

Ay = Xyq4 = X3

The normalized forces mav now be determined directly.

From VI.21l, write
12B5n

= —_— _ VI.39
Mn pgmR nKn(al2 a,

C
n

From VI, 22, obtain

2B

- n
V. = .
n wpgR(aln + a2n) VI.40

And from VI.25,

2B6n

'V[n = m’z{ VI.41

VI.5.4 Reflection and Transmission Coefficients

Noting the relationships for the reflection and trans-

mission coefficients, egqns. VI.15 and VI.1l6, we may write



43n © RLn 41n * TRn 3on
n " TIJ 41in * RLn 22n
setting 1, = T, = Tp, and Ry = Ry, = R
43n ~ Rnaln * Thfon

= +—
44n Th?1n RnaZn

Rn’
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vT.42,1

vT.42.2

In the following we will drop the R subscript, it being

understood that the equations apply to each harmonic.

Let the reflection coefficient be

R = rl + 1r2
and the transmission coefficient
= tl + J.t2

where s Toe tl and t2 are real quantities.

Also, let

where P and q; are real numbers.

Squations VI.42 may then be written

Py = 1Py = Tydy * tPy £,

gy = ryqy t rypp * By TP,

Py = TP, * Tody t 8Py~ B

Qg = TGy = Py + Hydy F B0y
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The unknowns may easily be solved algebraically.

ry = Dl/Det VI.43.1
r2 = D2/DEt vI.43.2
tl = D3/Det vI.43.3
t2 = D4/Det vI.43.4
wnere
pl ql Pz “qz i
dp P; 4 Py
Det =
Py qz Pl —dy
9, P, 93 P
b. = . .th
. = Det with 1 column replaced by

1
(P3r Q3r Pyr dy)

This operation must be carried out for each of the five
harmonics in order to obtain the respective reflection and

transmission coefficients.

VI.6 Presentation of Results

A total of 19 tests were conducted, each test consisting
of several runs corresponding to different wave periods. The
results of the first eight tests are not reported here since
the calibration coefficients of the wave probes were in doubt
and the results meaningless. These early tests served mainly

the purpose of working out experimental techniques.
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The numbering sequence is retained here, however, since
it is more convenient in referring to the computer output

which is numbered by the criginal sequence.

Table II.4 summarizes the parameters for tests 9-17.
All these tests were run with the cylinder a measured dis-
tance above the bottom. Runs were made with gap widths of
1/8", 1/4" 3/8" and 1/2". The results for the first harmonic
gquantities are summarized in Table VI.5. ©Notice that all

tests, with the exception of 17, were run using the 3" radius

cylinder.

Figures VI. through VI, show these results graphically.
Figures VI, and VI. show the phases of the horizontal and
vertical forces for a number of cases. The theoretical values

are plotted for each case.

After conducting these tests it became apparent that the
experimental scatter made it difficult to assess the exact
affect of the gap as presented by the theory. The difference
in vertical forces was negligible for the gap widths tested
and, while the general trend of the data appears correct, the
mass coefficient could not really be resolved close enough

to correlate with the logarithmic dependence or e predicted.

To obtain a better verification of the variation of CM
with g, test 18 was conducted in an attempt to simulate the
zero-gap case. Plates 11 and 12 show the cylinder setup

for this test. In order to block the flow through
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the gaps as much as possible, a plate in the raised

hottom of the tank was removed and the cvlinder set in the
slot. Plate 12 shows a closeup of this area with dve
injected during the passing of a wave. Wwhile the flow is not
completely blocked, a comparison with Plates 7, 8 and 9

shows a marked reduction.

The results for test 18 are shown in Figure VI. The

mass coefficient has been significantly increased over the

finite £ c¢ases.

Computer Output of Results

Program DATA reduced and analyzed the data for each
test run. Appendices G and H of this thesls present a com-

plete record of the program output for tests 9 through 189.

The output in Appendix G shows the Fourier coefficients
of the filtered data, the calculated wave varameters, the
non-dimensional forces, and parameters concerning the test.
Calibration data has heen presented elsewhere in this

chapter. Tables VI.

The first part of this output, the complex Fourier co-
efficients of the data, corresponds to the values 2, dis-
cussed in the last chapter. The vhysical guantity corres-

ponding to the output cf channel m may be written as

5 . 5
_ -inwt| _ .
xm(t) = Re{nlemne } = n;l[cmncos nwt + deSLn wt]

VI.44
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The value of c and d are listed for each channel
mn mn
n L

under the columns marked "cos" and "sin" respectively. The

values for the first 5 harmonics are given.

The next section of output lists wave parameters. These

may be defined as follows:

FREQUENCY = nw, n being the harmonic number.
WAVE LENGTH = wave length in feet.

WAVE FM. LEFT:

]

AMP magnitude of a. with units of inches.

I

PHASE phase of a;j in degrees.
WAVE FM. RIGHT:
AMP = magnitude of asn with units of inches.

PHASE = phase of Asn in degrees.

REF. COEF:
AMP = magnitude of Rj,. This is a dimensionless guantity,
the designation "(in.)" in the program is an error.
PHASE = phase of R, in degrees.
TRANS COEF:
AMP = magnitude of L also a dimensionless guantity
regardless of the program specification.
PHASE = phase of T, in degrees.
ORT = value of |Rnl2 + Irn|2, theoretically equal to 1.0

for conservation of energy.

The output marked "NON-DIMENSIONAL FORCES" gives the

following results for each harmonic:

FREQUENCY = (nw)*D/g, non-dimensional depth.
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FH = magnitude of Cmn(eqn. VI.39)

AH = phase of Cmn in degreeé.

FV = magnitude of V_ (eqn. VI.40)

av = phase of Gn in degrees

FM = magnitude of ﬁn (eqn. VI.41)

AM = phase of ﬁn in degrees

KD = wave number times depth

KA = wave number times magnitude of a,

FACTOR= coefficient used to compute non-dimensional forces.
This is of no interest here.

The test parameters listed at the bottom of the output
include the depth in feet, the ratio R/D, the gap width given
in feet, the cylinder radius in feet and the wave period in
seconds., The three factors labeled "ADF", "ADV" and "ACTOR"

are of no interest.

Teéts 18 and 19 were conducted without the use of the
digitizer. For these runs, wave amplitudes and phases were
visually picked directly off the oscillograph records., The
analysis is therefore made for only the first harmonic. An
error in the input 0f a calibration coefficient caused the
values of FH printed for these tests to be off by a factor of
1/2. To obtain the correct values of FH, multiply those given

for tests 18 and 19 by two.

Appendix H lists the time history of the signals over
one period for each channel., These are the values after

passing through the high pass filter (Appendix D) but before
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any Fourier analysis. A plot of these points would duplicate
the signal received from the signal conditioning equipment,

Tests 11, 12 and 13 are not available in this form.
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VI.7 Real Flow Througi Gaps

Tae inner sclution for flow through the gaps indicates
that the velocity reaches infinity at the edges. Real flow
cannot attain infinite velocity, so it can be expected that
this theory may e invalid in the regions adjacent to the

cylinder edges.

In order to examine the flow, photographs of dye motion
about the edges during the passage of various waves were
taken. 2lates 7-10 show this flow for the values of UmT/R
(the keulegan-Carpenter parameter), KA and T indicated (A in
the plates indicates thie amplitudes of the incident wave

from the left).

As inaicated in these plates, the flow through the gaps
does not conform to the inner flow sketched in Figure III.Z2.
The streamlines separate from the cylinder and form a jet,
ending with a single eddy at some distance £from the edge.
The strength of the jet is dependent on the relative wave
height, or, more precisely, on the Keulegan-Carpenter

parameter.

The effect of this diversion from the assumed flow may
pe approximated by considering the free streamline Ilcw
through an orifice (cf. Milne-Thompscn, Sec. 12.32). Quali-
tatively, it may be expected that the effect of the gap will
be less in the case of real fluid flow than in the idealized

model, since the inertial pressure drop across the gap will
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be less in the separated flow than in the attached case. On
the otlier hand, the drag component of the force can be
expegted do-be Higider n: trhe: reail Zlulal THis™ O-ters woule?
tend to shift the phase angle of the horizontal force, as

indeed appears to be the case from Figures VI.1l0 and VI.1ll.
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PLATE 7
T=.90, KA=.158, Uy T/R = .60
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PLATE 8
T=1.30, KA=.045, U, T/R = (.20
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PLATE 9
T=1.15, KA=.042, Uyn T/R= .96
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PLATE |0
T=1.30, KA=.0034,U, T/R= .092
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PLATE 11

CYLINDER IN POSITION FOR
"ZERO -GAP" TESTS
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PLATE [2

FLOW THROUGH GAP DURING
“"ZERO-~GAP" TESTS
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VII. CONCLUSIONS

The solution derived herein provides an adequate theory
for predicting the forces on a submerged cylinder, as 1is
apparent from the correlation of the theory with experiment.
In particular, -and of significant engineering importance, 1is
the conclusion that the inside region experiences a constant
pulsating pressure equal to the average of the pressures

acting around the base.

The applicability of this conclusion to the practical
problem of forces on a three-dimensional cbject has not been
proven, but intuitive reasoning indicates that it is plaus-
ible. If the pressure inside of a "dome", for example, did
not exhibit a first order variation, the pressure drop across

cHé:map WouRd Dk, oTn toaule p ame L ey . ANt R e, tha flow
would be first order. For very small gaps this seems un-

realistic.

The effect cn the horizontal force, for the cylinder, is
the same order as the gap flow. This has less significant
implications with regard tc the three-dimensional case.

Since in practice flow will be restricted either by design or
by nature (through erosion), the effect of flow through the
bottom may be less pronounced. It might be noted, however,
that a poorly designed experiment on three-dimensional models
could give erroneous horizontal force measurements. In par-

ticular, if a model is suspended above the bottom in order to
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provide a clearance for vertical motion, horizontal forces
will be less than in a more realistic setup with no clearance.

The error can be expected, on the basis of this thesis, to be

of the order 1l/4ne.

With regards to both the vertical and the horizontal
forces, the values computed on the basis of no gap appear to

represent a conservative upper limit on the actual forces.

A more thorough investigation of the three~dimensional
problem has not been carried out in this thesis. The same
method could in principle be applied, however. To do this,

the notential about a dome would have to be broken into its
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APPENDICES
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APPEND _. -

AN ALTERNATE MATCHING SCHEME

The semi-intuitive ma ing procedure used in Chapter II1I
may be shown to be equiva._ent to a more formal expansion
procedure. To show this, we will consider the problem of a
single slit in a vertical wall. The slit is a distance h
below the free surface, and waves are incident from the left
(see Figure A.l). This problem has been solved by Tuck
(1969) , and will be examined here only to illustrate the

eguivalence of two alternate matching schemes.

4y
N = N T
+ incident wave I >
« reflected wave h transmlttigve

FIGURE A.l

TRANSMISSION THROUGH A SLIT

The vertical wall extends to an infinite depth. The
transmission coefficient depends on the slit width (d) and
the depth of submergence (h). We will thus assune tnat the

serturbation parameter may be written as

e = d/h, A.l
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and that the transmission coefficient, 1, goes asymptoti-

cally to zero for small €.

Now we may represent the velocity potentials on eitaer

side of the barrier as fcllows:

left of wall: ¢2(x,y,a) ¢;(x,y) + 1l(e)¢i(x,y)

+a,(e)e5(x,y) + .n

I

right of wall: o  (x,y.€) ¢g(x,y) + a1(€)¢§{X.Y)

+ a2(5)¢§ {x,v} + ...

where (x,y) = (x,¥)/h

x and y are dimensional variables
. o
lim n+l _

e+0 )
n

lim o, =0
e+0 1

The boundary value problem satisfied by $~ and s¥ is as

follows:

2 Q,r
VET T xey) = 0 A.3.1
a¢*'r

aX (OrY) =0 Yy > —l+€: y < ~l-¢ A.3.2
NS 4 2

by - e 0 = o A.3.3
sV (x,y) - 1o EY¥gTIEX , 1XX % > —co A.3.4
sFix,y) = e X X > A5

Bquations A.3 are valid to any order. 3y virtue of the

. \ - . ; . . 4 r
linearity of tz=3s2 eguations, all of tie “inctions ¢; and ¢i'
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i=0,1, ..., N, satisfy A.3. Wwe nay simplify A.3.2 by

writing

L,
a r
2— 0y =0 v #-l

and noting that the approximation is valid to 0(eg}.

The potentials ¢R and ¢° are assumed valid only at dis-
tances faf removed from the slit. Using dimensionless nota-
tion (Chapter II), and assuming linear theory, the asymptotic
form of ¢i or x + —» and the complete ¢; may be written
immediately:

2iekY cos kx A.4

8L (x,y)

]
o

b=

uw

¢>§(x,y)

These are the solutions for a vertical barrier with no
gap and no "breaking" at the point (0C, 0). The introduction
of a small gap at a finite depth introduces a perturbation as
indicated by A.2. The representations A.2 are called the
"outer expansion" of the flow, and they represent the per-
turbed flow far from the slit (further than some radius §).
The perturbation potentials, ¢l' ¢2, etc., may thus be
represented oy multipole expansions at (0, -1). We will
assume, and matching will show, that the correct perturba-
tion is a simple source (or sink) placed at (0, -1). This
will be shown to be valid to 0(g?).

We may tihus write, tentatively,

E,r(

n X,¥) = + Anlinr+H(r)] A.6

¢

where ¢ = (x,y+1)
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r? = x? + (y+1)°
H(?} is a regular function of F.

We take the source strength to be +An on the left and
~A on the right, as must be the case from continuity. The
value of An can only be found by matching the outer solution
to an inner solution (Chapter I1i). The function anr + H(f)
is obviously simply the Green's function for a simple source
at (0,-1), thus H(;) is known. The region of non-uniformity
is determined by a radius én within which the perturbation

anAninr is no longer small. This implies

5 = 0 (a”1/%n) A.7

Inner Problen

We may proceed as in Chapter III to solve the inner

problem by stretching coordinates.

x = x/¢ A.8.1

-

y = x%i A.8.2

We may represent the inner flow as an asymptotic
expansion

Yix,y,e) = C + B le)yyix,y) + Sale)uy (xy) + oen A.9

where the B's play the same role as the 2's in A.3. As is
usually the case, én = o for this problem, but they will be
designated separately since they are not necessarily egual.

Since the boundary conditions remain linear and independent

of the order, we may write
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v, (X,¥) = -.gnRecosh'lE + ag A.10

where z = X + iy

We nave made use of the derivation of the flow througn a

slit in an infinite wall from Chapter III.

Matching

We shall find the values of An' Qn, C and q, through the

application of Van Dyke's matching principle (Van Dyke, 1964,

p. 89). Specifically, we will use the "asymptotic matching

principle”:

The m-term inner expansion of (the n-term outer
expansion) = the n-term inner expansion of (the

m~term outer expansion).

Tnis matching is accomplished by the following procedure:

Choose m=n or n+l.

Write first n terms of the outer expansion (A.2} in
terms of the inner variables (x,y).

Expand this for small g, include first m terms of
expansion.

Write first m terms of the inner expansion (A.9) in
terns of the outer variables (s,y)}.

Zxpand this for small g, include first n terms.

Convert both expansions {(from steps 3 and 5} into the
same cocrdinates.

Equate the two expansions and determine the unkncwns.

Now, choose m=2, n=1, to get:



1. 2 term outer expansion:

£

—ul(e>al[;nr+ut?)]

L=
M

2. Rewritten in inner variables:

. 2ieK(y€—n)

-
I?

-ul(E)Al[Lnar + H(sr)]

-4 216 cosnx + ul(s)Al[Lnrﬂi{?)]

coskxes + al(s)Al[;nef + H(E?}}

3. Expané for small £ (keeping %,y fixed):

/Q. - . _Kh I
7 = 2ie + alAlnna
I _
¢ = —&1A12n€
4, 1 term inner expansicn:
U(x,y) = C

5. Rewrite in outer coordinates:
pi(x,y) = C

6. Expand for small ¢, ({x,y) fixed:

@(XrY} = C

In order to obtain a solution, we must set 11(5)

= 0(1/+ine). Setting

ul(e) = 1/ine,
we obtain, by equating the expressions
to C: 2J'Le_kh + Al = C
-A = C

1

obtained at step 3

192.
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Thus, we cobtain:

C = =4 = ie A.ll

To find higher order terms, repeat this procedure for,
say, m=3, n=2, etc. ad nauseum. We will perform one more

iteration here:

1. 3 term outer expansion:

% 2 2ie™®Ycoskx - EE:EE[R FH(Z)] + a A [Rnr+l(E)]
P = die coskx The nr r az 2 nr+li(r
r ie_kh > >
P = W[Enrﬂl(r)] - 0€2A2[Rnr+H(r)]
2. Rewrite in inner variables:
— . =kh
¢£ = 2ie X (YER) ogrxe - line [2n(Te)+ii(e7) ]
+ oA, [enT +E(er) ]
r e - >
¢ = [¢nr +H({re}] - azAz[ﬂnr +h(er) ]

3. Expand for small ¢, (X,y fixed)

Ya gtk L EEEE{an+H(OJ] + a A ine + 0(e)  A.12.1

P = Tne az 2 ne € . .

r -kh ie-kh =

¢ = le + TaT (Lnr+lI(0)] - azAzinE A.12.2
4. 2 term inner expansion:

-1.-—
;=
$ = C + 8, {Q,R,cosh ~iz + ql}
5. Rewrite in outer variables:

o -1,.
g = C + Bl {QlRecosh (iz/e) + ql}
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6. Expand for small £ (z fixed}:

2r
n ~ 2 { el
v = C+ 3 {+ 2, An=— + ql}
("+" for x » @, "=-" for x < 0)

7. 3 term outer expansion (of 2 term inner)
¥ = C + B,Q;%ne + 3,Q,2n2r + B,q,
If we now rewrite this in inner coordinates, we get:

y = C + BlQl£n2r + qul A.13

First, comparing the 2nr terms, which must match,

we find:
ie-kh
81 = T
from which we deduce that 3, = 1/%ne and Q) = -3, = je kn.

The next terms to match are of 0(1/Lne). In order for A.1l2
to match with A. , we must set o, = (1/%ne)? to obtain

(setting Ql = -Al):

A, = Al[inZ - 11(0)] A.1l4

Combining the results so far with A.2 and A.6, we can

write the outer expansion as

6" = 2ie X¥coskx - ieﬁkh[ﬁnr+H(;}]{

1 Ain2-H(0)
Tne T "(ine) ? T T }
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r . . _-kh »yi 1 , 2n2-H(D)
¢J z e [2nr+H(r”{;nE + W + ...} A.15.2

The above process ca: 3f course be extended indefinitely,
vielding in this case an asymptotic series in (1/%ne)™ carried
to an infinite number of terms. Actually, at some point the
series should be truncated since the accuracy gained by
adding a term of (l/ﬂne)N will, for finite values of £, be
less than that lost by ignoring 0(e) terms. This happens
when N = -fne/fn[fne|. Notice that N becomes infinite as

£ > 0.

Further terms in the above expansions may be added with

increasing tedium.

Comparison with "Semi-Intuitive" Matching

It is much easier to find the solution to this problem

directly by setting

2ie ™ Ycoskx + Ate) [nrn(E)] A.16.1

It

¢£(X:Y)

H

¢rfx,y) -a(e) [£nr+H(§)] A.l16.2

for the outer solution, and
p(xX,¥v,e}) = P 4+ Q(e)Re cosh_l (iz/¢) A.17

for the inner sclution. These Yepresentations are of course
valid to whatever order the particular form of the solutions
is valid, since the same expressions could be derived by
factoring the [inr+H(¥)] and the [Re cosh T (iz}] expressions
from A.2 and A.9 respectively. In particular, we sece

immediately that



N
Ae) = nzlrnan A.18
N
Q(e) = ] 2.2, A.19
n=1
N
and P =C + z ann A.20
n=1

To show the equivalence of the two forms of matching,
we need only set the outer limit of the inner solution (A.17)

egqual to the inner limit of the outer solution (A.16) to

obtain {setting A = -0 for continuity)
. _=lkh .
2ie + A[fnr + H(0)] = P + Ain{2r/e) A.21.1
-Alénr + E(0)] = P -~ Ain{(2r/¢) A.21.2
which yields
p = ie”®d A.22
je kb
A = YR3T H(0) = ine A.23

Expanding A(e) in powers of (1/.ing) yields

_ - - .

Ale) = 1 —ie kD ~ . ie kh 1 4+ xn2-H(O) !
Ane 7 - in2~H(0) inE ANE

ine - B

A.24

Comparing A.l1l5 and A.16 using A.24 shows that botn

matching procedures do ilndeed yielca the same result.
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APPENDIX B

GREEN'S FUNCTION

The Green's function is the potential of a source at
(£,n) which satisfies the free surface condition, the bottom
boundary condition, and the radiation conditions at x = + o,
If this function is G(x,y|£,n), when the time dependence has

been superseded as in Chapter II, then

VIG(x,yl&,n) = = 27 §(x-£)6 (y-n) B.1
(v - 3/3y) G(x,D|&,n) =0 B.2
G{x,0{&,n) _

G =~ eiin X > + B.4

where v = w?/qg

The equations have been written in dimensional form.
These equations nave been solved by numerous authors. Thorne

(1953) writes G{x,y|&,n) in the form

G(x,y|&,n) = in(r/r') + ¢, (x,y{g,m) + i¢ (x,y|E,n),
where r? = (x-&)?% + (y-n)2
r'? = (x-£)? + (y+n-2D)?

He then solves for ¢l by writing

o]

+ fz(g,n,k) cosh k(D-y)] cos kx dk
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and selecting f1 and f2 so that the boundary conditions
B.2 and B.3 are satisfied. ¢2 is selected so the radiation

conditions are satisfied.

Wehausen and Laitone solve the same problem using the
complex potential function, and Mei (1969%) finds the Green's
function by Fourier transform techniques. Only the results

will be presented here.

As given by Thorne, and with a substitution indicated

by Wehausen*, the functions ¢l and ¢2 may be written

¢l(x,y|£,n) = - 24nD
-5 ® R+ e_choshk(D+n)coshk(D+y)cosk(x—g)
A k k sinh kD ~ v cosh kD
e-kD
+ " } dk
Ki-y2

coshK (D+n) coshK (D+y) cosK (x-£&)

¢2(x,y|£,n) = K(KZD-y2D+V)

The asymptotic form may be written

27 (K2-v?) iK|x-&|-im/2

lim G(x,y|&,n) = R(RID=v7D+y] COShK (D+y) coshK(D+E)e
x>0

The value of the integral for 1 is computed by taking

{numerically} the limit

*Wehausen introduces the identity

e XD sinh kD _ K -

vD + sinh® KD XZD v

<

3

+
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oo s K—-A w0
£{k) dk ey J J }
- = = lim ( Ydk + ( )dk
SE) k sinh kD v cosh kD Aso { o K-A

for each set of values (x,y|&,n) on the cylinder.
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APPENDIX C

ASYMPTOTIC LIMITS OF cosh tiz

The solution to the inner problem was obtained in

Chapter III by performing a conformal mapping:
Z = -1 cosh ¢ IXT.21
where Z = (xtl)/e + iy/e

This mapping is illustrated in Figures II1.3,4. The

asymptotic limits may be taken, for the left side of the gap,

_s =~ (E+in)
lim 2 = —*= 5 c.1l
F;)-oo
o<n<n

and, for the right side of the gap,

_: . (E+in)
lim z = —=x5 _ C.2
£t 2
o<n <1

Thus, we méy take the mapping in the two limits to be:

- &n2iz (left side)

]
H

r = fn2i% (right side}

which yields the complex velocity potential from equation

ITr.22,
W(z) > + URn2iZ + C,

wihich yields the asymptotic form of the velocity potential

when only the real part is taken, i.e.,
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${X,Y) = + Uen2{z| + C.

This "outer limit"” has been utilized in Chapter IV for

the matching.
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APPENDIX D

NUMERICAL FILTERING OF DATA

If we desire to low pass filter a time function, x(t),
we must pass it through a linear system with the following

transfer function

l
=
o

|
=

A
=3

A
£

H{w)

1]
o
o
£
v
£

H(w)

In this manner, if X(w) is the Fourier transform of

x(t) (cf. Davenport and Root)

+® X
X{w) = r J x(t)e_lmtdt D.1
V2T

-

The Fourier transform of the output, y(t), will be
Y(w) = Hlw) X{w}, D.2

so that y(t) will be x(t) with frequencies of |w| > w,

removed,

y(t) may be found by taking the inverse Fourier trans-

form of D.2

1 e iwt
y(t) = "—ﬁ-J H{w) X(w) e dw D.3
V2T =
Noting that
+oo .
H{w) = —— j hit) e *9t at,
,/211' —co

write
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l ® 1
—— J H(E') x(e-t') dt! D.4
21 4 =00

Equation D.l1 is the familiar convolution integral

(cf. Blackman and Tuckey, p. 72). Equation D.4 is helpful

in our case since we may find the filtered function, y(t),

AL MO O m.mQ-E%?ﬁﬁ.]erhﬂnﬁﬁ—ﬁfrﬂrw}ﬂrﬂ‘ggtﬁﬁ ;iﬂg%ggsgéggxgggﬂggkgg} -]‘-'xi!i i ir?I:g T T TORT PRI

£ infinite
:d by one over
= taken over

re only in-

>d, we will cal-

the record

zord. I1f the

do this, we must determine h(t):

+w
I H(w) e ¥tau

]

h(t)

iwt

|-

=

A
£

N

sin Ww_ t
- <
t

i
-~
4

Equation D.4 may now be written

1 (t sin wct'
— = 4t
o =3[ e —

-G

Since we cannot obtain a wave record

- length, the above integral must be approxim
a finite time period. The actual records w

several (at least 5) wave éycles. Since we

terested in the filtered values over one pe€

culate y(t) for t's lying within a length o

representing no more than 1/5 of the total
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total sample time 1is T {(sec.), the punched data will con-

sist of 250 TS points for each of seven channels of informa-

tion (for a sample rate of 250 Hz.).

The point t - T/2 may

arbitrarily be selected to correspond to the &th point of

the data, 2 = 125 Ts' so that t

the recorded data.

equal number of points to each side of the midpoint.

= T/2 lies in the middle of

The points t=9 and t=T will thus lie an

The

situation is shown graphically in Figure D.1l.

T

- Tt e T g L TSR Soma ey

jration over a finite time,

sin w_t' d4dt!

:he limits of the
r/2 - M, where M is a

hash that might

-
'~
i
1
=
X
=
3
=
)
b

D

. Id
i

I
—(T)
—iD
m—rrd
| )

e T A

In order that the i

would not require values of x(t) beyor

record length, we must select Ty, = Tg

buffer to protect us from picking up ¢
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exist at the ends of the record, M is typically selected

to equal 50.

Now, selecting the ¢~ .a points so that

yi(tj) = Yij = Y£+j
where yi(tj) is the signal for channel i

at time t = tj

o+
]

{j-1) AT

At T/N

[

number of points to be

=z
I

calculated for one cycle

and letting tj =t - t' in we may write

titT, sin o {(t.-t.)
c'"j i

Y(ti) = J x(tj} . = ¢t

- J
ti To .

A~

dat.
i ]

This may be written in numerical form

[

3|
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Program DATA reads the cards punched on the IBM 1130

and applies the filter D.8 to all channels prior to Fourier

analysis.
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APPENDIX E

RADIATION FROM N 0S_ ILLATING CYLINDER

lution for an oscillating cylinder in calm water
est because the damping coefficient may be directly
the magnitude (but not the phase) of the force

by means of the Haskind relations (see lewman,

........................................

damping coefficients, are readily computed by the same prc
gram used to compute the wave forces with minor alterat.or
These computations serve two purposes. First, a comparisc
of the computed added mass coefficients with those measure
in the cylinder vibration studies (Table provides ar
alternate means of comparing the linear theory with exper]
ment. Secondly, by computing the wave force coefficint or
via direct computation, and once via the Haskind relations
using computed damping coefficients, the reliability of t!
computer program may be checked since the Haskind relatior
holds only between the exact linear damping coefficient ar

the exact wave force coefficient.

The formulation of this problem follows closely that

the wave force problem. We will again denote the potenti:
— +

outside the cylinder by ¢(r}, that inside by 3(r), and the

N
“inner" gap potential by &(r).

The cylinder will be assumed oscillating in the hori-

zontal plane with a velocity
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u(t) = Uo cos wt. E.1

The fluid is assumed incompressible and the motion

irrotational.

E.1 The OQutside Region

$(§) then satisfies the following conditions:

v2H(5) = 0 E.2.1

5, 00) - 22 F(x,0) = 0 E.2.2

$y(x,0) =0 |x] > 1 E.2.3

3, (x v ) =Ucos 6 E.2.4
where x; + y; = 1

_ -1
8= tan (xs/ys)

In addition, ¢(x,y) satisfies the radiation condition at
|x| > e.

We will again write $(r) as a first order term plus a
source and a sink perturbation term te account for the gap.
We will introduce the same non-uniformities as before and

will solve by matching the solutions near each gap.

Let

F(E) = F,(5) + Q(e)F (F) E.3.1

F () = &nlr /rp) + H(E) E.3.2

The conditions on $1 and $2 are the same with the
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exception of the boundary condition on the cylinder.

U cos 6 E.4.1

Lo}
N
n
—
Il

We can see immediately that H(Z) is identical to H(¥)

in egn. for the wave force calculation.

The first order outside potential, $l’ may be found
numerically by the same integral equation as was ¢So(;) for

the wave force, namely

J ¢, (E,m) %% (x v |&,/n)dL

I
'
Al

31 (XS'YS)
3$l
J Gl v |8/} w7 (xgy)dl

El

=-1 3G U
= p- J ¢ T dg + = J G cos b di E.5

where the integrations are taken over the cylinder's surface
as before. £.5 may be solved numerically by the same program
used to compute ¢so(;) by simply making the substitution

B¢i

= U cos © E.6
an

in the program, i.e., by using the oscillating velaocities

rather than the incident wave velocities.

L - - —
Nr=g¥ B R T

Assuming this computatiorn nasshéen harrieg=ou.; wetn@y "7 %

write as before:

¢O(l,0) = ¢OR E.7.1

3,(-1,00=F
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U
ot
=
L
~l
w

H(1,0)

]
o
|
e |
Y

H(_lro)

E,2 The Inside Region

The conditions to be satisfied by ¢(r) are simplified

by the absence cof a free surface.

92¢(r) = 0 E.8.1
&y(x,o) =0 £.8.2
$n{xs'ys) = U cos 8 E.8.3

The potential which satisfies these conditions is the
same as that for a fixed cylinder with an added term to

satisfy E.8.2:

$(¥) = B(e) + Ux + Q(e)2nlrp/r;) E.9

E.3 The Inner Solution

The inner solution, like the inside solution, remains
the same as before with the addition of a term to account for

the motion of the cylinder wall. Thus we may write
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A - -1,.
¢L(XL'YL) =Cp + Qs Re {cosh (lzL)} + Ux E.10.1
~ -1,.
¢p{Xgr¥p) = Cp + Q(e) Re {cosh™ " (iZ )} + Ux E.10.2

where the inner variables are again defined as

X = (x+l) /¢
¥, o= y/€
Xp = (x-1)/¢
Y, = y/¢

The term Ux is written in outer coordinates since match-

ing will be carried out in that system.

E.4

The outer limits of the inner solutions may be written

as follows:

lim ¢ (X, ,¥;) = C. + Q(e)on(2r, /e) E.11.1
E+0
XL,YL fixed
x$o
E.11.2

lim ¢R(XR.YR) = CR + Q(E}in(2rR/e)
£+0
XR'YR fixed

<
x50

where r; y(x+1}°% + y<

/=D T ¥ v7

Tr

The inner limits of the outer solutions may be taken as



iim d{r) = ¢0L + Q[Ran - £n2 + HL]
r+(=1,0)

11m $lr) = Por * Q[&n2 - &nr + HR}
r+(1,0)

lim 3(;) =B - U+ Q(in2 - lan)
r+(-1,0)

lim $(§) =B + U + Q(QnrR - in2)
+{1,0)
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E.12.1

E.1l2.2

E.12.1

E.13.2

We may now find the source strength by writing the total

circulation in terms of the potential differences across each

region (i.e., the method presented in Section The

equation for the circulation becomes

¢, Qilan—£n2+HL] - O.r "~ Q[2n2—£nrR+HR]

+ Cp - Q[ln2+2an—inEJ - CL - Q[£n2+£an—£nE]
+ B + U + Q[inrR-inZ] - B + U - Q[inZ—anL]

+ CR - Q[£n2+£nrR—Rn£] - CR - Q[£n2+£nrR—£ne]
= 0

Cancelling terms in E,l14 and solving for Q vields

¢OR - ¢oL - U

Q = — -
HL HR Bin2 + 4ine

E.5 Matching

Using E.l5 instead of

.15
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in program MAIN yields the forces per unit velocity (setting
U = 1.0) on a cylinder oscillating in the heorizontal plane,
If we write these forces as

F = fl + 1f2,

we can identify f, with the damping coefficient of the
cylinder and £, with its added mass. In particular, if fl

and f. are in units of lbs. force per foot per second

2
velocity, we may write the damping coefficient and the added

mass respectively

B11 = fl E.16.1

All = fz/m E.16.2

Haskind's relation for horizontal wave force may he
written {(Newman, 1962)

.17

™

[Pyl = a/pg?/w Byy -«

This may be written in terms of the Morison mass co-

efficient CM as

H
pgTRZKa

2 F_ cosh KD _ 2 cosh KD

[Cyl =

/592 5.18
J BB,

" DgTKRZ

Table E.l shows wvalues of CM computed by the two methods.
The column marked CM presents values computed via the wave
scattering program; the column marked CM' shows values com-

puted via the radiation solution and Haskind's relations.



KD £Z§ £ “M _E;T-

.873 .50 0.0 2.013 1.935

.873 .50 01 1.393 1.351

6.817 -50 0.0 1.582 1.532

6.817 .50 .01 1.740 1.712
TABLE E.1

The difference between CM

numerical errors.

and C_ '

M

These results indicate,

is due entirely to

therefore,
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relative accuracy of the computer program used for calcula-

ting wave forces.
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Appendices F, G and H have been omitted from
this report. They may be found in the original
Thesis or cobtained from the author. Contact the
Department of Ocean Engineering, M.I.T.,

Cambridge, Massachusetts 02139






