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Abstract

An experimental and theoretical investigation is con-
ducted into the nature of the wave motion past  and under! a
semi-circular cylinder suspended a short distance above the
sea bottom. Particular attention is drawn to the flow
through the gaps at the cylinder's edges.

The flow is represented by replacing the gaps by a fluid
source and a. fluid sink respectively. The strength of the
source and sink is found by a semi-intuitive matched asymp-
totic expansion scheme. The pressures both inside and out-
side the cylinder are computed and the resulting forces
plotted.

A significant reduction in the horizontal force is
noted for very small gap widths. This result is supported by
force measurements in the wave tank, as is the discovery that
the vertical force is largely affected by a first order con-
stant pressure acting inside the cylinder.

Reflection coefficients measured in the tank showed less

correlation to the theory, mostly due to sensitivity to beach
reflected waves.

The extension of this theory to three-dimensional
objects is discussed, and a comparison is made with other
investigators' data.
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I . INT RODUCT ION

Recent discovery and subsequent production of oil fields
fa~ offshore has spurred considerable interest in the concept

of

to

cap.

uti

bee

Figux

tank.

Ano&

the proto'

structed w

*Reference

author ci
works by

site storage and loading of crude oil as an alternative

lizing long pipelines. The economic savings in both
l expenditures and operating costs introduced by
ing structures for the submerged storage of oil have
iscussed by Chamberlin �969! . The Chicago Bridge and
ins -alled =ie erst � submerged oiJ ~Grege taLi~

n Gulf in August, 1969. This tank consists of

steel structure approximately 250 feet in

75 feet high. A 30-foot diameter riser pene-

ee surface. The tank has a capacity of 500,000

ude oil  about 75,000 tons!, and sits in 156

The tank operates on a water displacement

t is free flooding through ducts and openings

e ringwall so that, as oil is pumped down the

ie tank water passes out the bottom.

:.l shows schematically the operation of the

submerged oil storage design has been tested at

stage  see Itokawa, 1969!. This model was con-

a hemispherical cap of flexible material and

tre listed in alphabetical order by the first,
and by the year of publication for different

same author, in the Bibliography.

Iron Compa:

in the Per

a dome-sha

diameter a

trates the

barrels of

feet of wa

principle.

abOut itS
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a steel ellipsoidal base and was capable of holding up to

10,000 gallons.

C~F~J> n «~ $1 ~ ~ ~ ~ R

age, large

I.e cities

challenges in

if maximum

res. The

« are

L ing and
end "Science
Liable f rom

«t is the
Navy,"

ivy s

Xn addition to their obvious use in oil st

underwater structures have been studied as poss

o f the f uture. *

Naturally, one of the greatest engineering

the design of these structures is the predictio

design loadings under the influence of surface

problems related to the prediction of these for

*See, e.g., Commission on Marine Science, Engin
Resources, "Our Nation and the Sea," Jan. 1969
and Environment," Vols. 1-3, Feb. 1969, both a
the Superintendent of Documents. Also of inte
report "The Ocean Engineering Program of the U
Sept. 1967, Office of the Oceanographer of the
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complicated by the fact that the structures are large com-
pared with the wave lengths encountered so that significant
scattering of the waves takes place. Traditional civil
engineering methods for calculating forces on piles and other
small objects in the coastal zone are no longer sufficient.

This realization has slowly crept into the engineering

community as witnessed by the proliferation of studies into
the forces on submerged objects in recent years.

I.l The Problem of Excitin Forces

In many ways, the problems associated with wave inter-

action with large submerged. objects are the same as those

which have been under study for years by naval architects in
connection with the exciting forces on ships and other

floating objects.

Haskind  L957! derived in exact  within linear theory!

relationship between the exciting  wave! forces on an object
and its damping coefficient in harmonic motion thus leading
to a simplification in most cases of the work involved in
calculating the forces. Earlier work by Havelock  l955!,
Ursell �950! and others provided theories for the damping

coefficients and added mass of simple geometries, both

floating and submerged, which could subsequently be utilized
to compute wave forces via Haskind's relations.

Newman �960! utilized Haskind's relations to find the

exciting forces on a submerged ellipsoid  in three dimensions!
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and an ellipse  in two dimensions! .

l. 2 Surve of the Methods

The methods used in the calculation of wave forces  or

the added mass and damping in the case of radiation! vary in

their numerical complexity and in the information which they

yield. Usually the complexity increases as more information

is desired.

I 2.1 Matchin Pol nomial Coefficients

Ursell's method  Ursell, 1950! has been the most popu-

lar approach until recently. This method involves the fol-

lowing procedure: describe the flow by a polynomial expan-

sion, including a source term, about the origin plus a

radiated wave of unknown amplitude. Divide the object into a

finite number of grids; N, and write the boundary condition

on each of the grids in terms of the polynomial expansion.

The equations may then be solved algebraically for the

unknown polynomial coefficients if the solution is approxi-

mated by a polynomial of degree N-l. This method leads to a

near field solution for the flow to any degree of approxima-

tion desired, depending only on the number of grid points

taken.
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numerical solution of the integral equation has been widely

used in the prediction of loads on airfoils  see, e.g.,

Ashely, 1966!, but the complexity of the Green's function
with the inclusion of free surface effects has discouraged

its use in water wave problems. Recent advances in computer

design and performance have largely reduced the difficulties,
however, and this approach offers many practical advantages

mb -acdzN~n Pm Xbe-irdmgrali'- anaaneer=nqj au~~.

llllllllllllllllllllllllllllllll1Ill ll Ill, �IIIIIIII I I I IJIJIIIJJIIJIJIJJ IIIJIQIJIIJ IJII II! IIJ IJ I I! IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
JIJIJJII lliJIJIJIJJ'giIliJjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjlllllllllll9JIllllill'ItlllliIjMllfllItIJIIIIIJIII11IIJItlIJJI!I JJJ IJJ III

be written to account for a wide variety of general shapes,

and may even be incorporated in a general design program to

calculate tradeof fs for various shapes, depths, etc.

Kim  l962! used the integral equation method to find

dimensional objects have been calculated by Milgram and

Halkyard �971! and Garrison, et al �970! . Garrison in
on a submerged dome. NeiAA 1 'tl r n ear+ armer' some exoeriments

weak reflection of waves by a bottom

oximate solution to the Fredholm

�969! calculated t

obstacle using an a

integral equation.

Method I.2.3 The Variatioz

>nsiderably more finesse than either of

methods is the variational method.

A scheme wiM

the previously stat

the damping and added mass coefficients of rolling or heaving
disk in the free surface. The forces on submerged three-
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This method has been utilized extensively in electro-

magnetic theory  see, e. g., Collin, 1960, Chapter 8!, and

has been applied to scattering and radiation of surface

waves by Miles �967!, Black et al �971!, and Miles and

Gilbert �969! among others. The variational approach

allows the computation of radiated waves  and thus the

exciting forces via Haskind's reLations! with greatly

reduced numerical effort. This method does not, however,

yield the near field flow conditions. For engineering pur-

poses, the net forces computed by such a scheme may be

helpful in foundation design, but the distribution of

pressures is essential information for structural consid-

erations. Either of the previous methods would be prefer-

able from this point of view.

A complete discussion of scattering, or diffraction, of

ocean waves is beyond the scope of this thesis. A general

and thorough discussion of wave interactions may be found

in Wehausan and Laitone �960!, and an up-to-date review of

the literature is given by Newman �971!.

I.2.4 Other A roaches

Running a parallel, though seemingly unassociated,

course with the investigations mentioned above, which were

mainly associated with naval architectural problems, was

the "coastal engineering" approach. This approach was

initially developed for the determinations of wave loads on

vertical piles such as those used as dock supports and as
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D M 2 DpA ulul + CMpF 3tD M 2 D p

where

F = total force on an object in the direction of u

F = drag force
D

F = inertial force

C = drag coefficient
D

p = mass density of fluid  sea water = 2.0!

area of object projected on plane perpendicular
to the direction o f flow

A
p

velocity of fluid

inertial coefficient

submerged volume of the object

A great deal of study has been done on the forces on

submerged objects under the assumption that the Morison

structural members in the "Texas Tower" type oil rigs. An

extensive dependence on empirical observation, plus the com-

bined conclusions of hydrodynamicists back to the studies of

pendulums in a viscous fluid by G. G. Stokes in 1851, led
Morison and nis co-investigators  Morison, et al, 1950! to

the conclusion that the total force on an ocean structure

could be divided into two components: a drag force and an

inertial force. This conclusion gives rise to the well known

"Morison equation" which has been almost universally adopted

by the coastal engineering community:



25.

equation correctly accounted for the forces. O' Brien and

Morison �952!, and more recently Grace and Casciano �969!

have correlated CM and CD to experimental observations of

forces on small submerged spheres. Extensive measurements

and further correlation of CM and CD for vertical piling was

carried out by Wiegal, Beebe and Moon �957!. Their tests,

conducted in an open ocean environment, showed considerable

scatter of data  see Figures I.2 and I.3! which was subse-

quently explained and corrected by Borgman �967! through a

spectral analysis of the wave records.

Considerably better correlation of C and C with

experiment was obtained by Keulegan and Carpenter �958!

under laboratory conditions, and with the allowance that C

and C may vary over a wave cycle. A detailed discussion of

their approach is included in Chapter VI of this thesis.

Other tests have been undertaken. Wiegel �964! offers

an extensive survey of these tests and some of the theoret-

ical advances.

Since the Norison formula was originally introduced as a

device to predict wave forces on small diameter piles, its

acceptability for objects which exhibited scattering was not

well understood until subsequent developments, some of which

were mentioned above. In particular, NacCamy and Fuchs

�954! calculated the effect of diffraction of piles and con-



26.



27.

C , but that the phase of the inertial force must also be

altered if dif fraction is to be taken into account. This

result led to later generalizations of the Norison equation,

such as that used by Motora and Koyama  l966!:

F = kl > + 2ulu! k3u1 3t
I.2

In this thesis Morison's equation is introduced in a

modified form allowing CM to take on complex values to

account for the phase shift. The magnitude of CM then pro-

vides a non-dimensional horizontal force measurement as well

as a coefficient for engineering comparison.

I.3 Recent Work on Lar e Submer ed Ob'ects

The advent of large submerged objects in the sea has

brought the theoretical approaches of the naval architects

into the field of coastal or "ocean" engineering. Recent

diffraction studies, primarily those of Milgram and Halkyard

 l971! and Rao and Garrison �970! have been motivated by the

Chicago Bridge and Iron Company's oil storage tank, as have

where kl, k2 and k3 are coe f f icients to be determined

either experimentally or theoretically.

This equation certainly has more appeal for large ocean

structures. A simplification of the equation is made for the

case of large structures by observing that, for all but the

largest waves, the drag forces are of a second order to the

inertial forces.
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been the experimental studies of Herbich and Shank  l970! .

This author's work has been large3,y sponsored by that com-

pany, while, needless to say, many proprietary studies have

been conducted by various concerns.

There is yet to appear a comprehensive theory to take

into account all the factors influencing the force on these

types of structures. Even if we restrict ourselves to linear

theory  where everything is proportional to the wave height!
the fol3.owing questions have not been satisfactorily answered:

l. What effect does structural deflection have

on the total loads?

-i~ D4 ol /wat . ~ 2
How' muck: energy -i transm:=

interface inside the tank?

ater under the 3. What effect does the flow o

tank have on the net loads?

zed in the 4 How can these effects be ut

improvement of the design?

.heories to date has

underneath the struc-

ice in the full scale

illy devised experiment,

.egard, it is interest-

'0!, in conducting force

<1 shapes, actually had

measuring the pressures

The most conspicuous failure o

been the failure to account for f lc

ture, an effect which surely takes

tank and, except. under the most car

in the model tests as well. En thi

ing to note that Rao and Garrison

measurements on submerged hemisphex

to correct for the bottom e f fects k
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inside the model and subtracting the uplift resulting from

this pressure from the total measured loads. This corrected

force compared reasonably well with their diffraction theory,

which accounted for only the pressures on the outside of the

hemisphere.

The present work is aimed at gaining an understanding of

the effect of flow about the bottom of a submerged object.

A cylinder is selected, rather than the more realistic hemi-

sphere, since the theory in this case is simpler and a more

meaningful experiment could be carried out in the facilities

available. Zn principle, the methods used here could be used

to compute the effects on a three-dimensional object, pro-

vided more computation time could be afforded and a large

wave tank were available to compare results.

I =4 ==Gopeo of W'4~ 'thesis. an~W4e..hD~~aarh

The present problem was selected because it offers the

opportunity to develop a "complete" diffraction theory for a

physically realizable situation which can be tested in the

laboratory. The geometry selected is that of a semi-circular

cylinder mounted close to the horizontal bottom.

The flow through the slits at the bottom of each side of

the cylinder is accounted for by assuming a source of unknown

strength at one gap and a sink of equal strength at the

other. Locally, the flow through the gaps is treated as the

flow through an orifice in an infinite wall, and the source
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strength is ad justed so that these two approximations agree

wi thin a ce r tain "intermediate" region.

This approach is a simple and straightforward applica-

tion of the method of matched asymptotic expansions as used

by Tuck �971! . Strictly speaking, it is only valid for
small gap widths, as determined by the ratio of gap width to

cylinder radius  =s!, although recent exact solutions by
Guiney �97l! have shown Tuck's solution to be valid for

rather large values of his small parameter  equivalent to

.4! .

The theoretical problem is solved in Chapters II, III

and IV. Chapter V discusses the forces resulting from the

computed flow, and compares the results with measured f orces

by other investigators. Chapter VI discusses the experimen-
tal setup and the analytical procedures used to reduce the

data, as well as the results of the experiments. Chapter VII

presents a summary of the results and conclusions drawn

therefrom, including comments concerning the three-dimension-

al problem and the oil/water interface problem. The

Appendices contain an extended discussion of the matching
process of Tuck, as well as the solution for the case of an

oscillating structure which is used as a check on the com-

puter program. Finally, a listing of the computer programs

and a complete compilation of the test. results are included.
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EE- STATEMENT OF THE PROBLEM

Consider an infinitely long semi-circular cylinder

situated as shown in Figure II.l. The cylinder is fixed and

rigidly held so that its edges are a distance d off the sea

bottom. "Small" gravity waves pass the cylinder witn crests

parallel to its axis, and the cylinder in turn reflects some

of the wave energy and experiences a force.

Define tne velocity potential function, 4 x,y,t!, such

tnat

u x,y,t! = 74 x,y,t! II. 1

where u. x,y,t! is the velocity vector of the
fluid at the point  x,y! ~

Throughout this discussion we will assume the motion to
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be simpLe harmonic so that the time dependence may be

separated:
-iQJt

4  x,y,t! = Re[! x,y! e ] II.2

All dependent variables will henceforth be written as

spacial functions only, with the time dependence implied by

II. 2 assumed.

Non-dimensionalize independent variables as folLows:

 x,y! = R  x,y!

t = t/u,

R images iog jrrh
~:. Pa <3. 5~ a

IIIIIIIIIIII

Si
~AF eI ~ I ~ I ~ I ~ I ~ I ~ I ~ I ~ Iip  xyp3 pea 'p ~ I ~~ I~ I ~ I ~ I ~iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiigwes sQwe:-==:=:=:==:

F x,y! = F x y!force

where K tanh KD = m /g

a = wave amplitude

ZI. 5. 1

II.5.2

c = d/R

5 =Ka

Henceforth all variables will be assumed dimensionless

unless stated otherwise, and the caps over the variables will

be omitted. It will be convenient to define



33.

It will be necessary to examine the flow in the regions

exterior and interior to the cylinder separately. For this

purpose, define as the "outside region" that for which

x +  y-s! ~ > l

0 < y < D,

and tree "ins ide region" that f or which

x~ +  y-c! < l

y ! 0

The flow in the outside region will be identified by the

velocity potential ]  x,y! . If this is taken to be a two

II.6+ u  s! !.  x,y! +
i2

gage functions as yet undetermined. The a,  e! 's

We may expan

$ x,y!

LI.6 to obtain

ig we will neglect terms of 0 � ! and

! � cLl ! ~ This theory is thus valid only

In the folio

calculate terms o

:a.==eM an.s:qj. ij j: a~a a.. we=may -w=.-e. --:'--.- . -- -. - �.- -, .--.- --, .�;. -jrtgrjy~>-o> - � >�
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1» - ~ rts

1

In the following discussion we have incorporated the

impl ci ly in our non-dimensionalization. Also, it. will be

convenient to write P as t xe "incident" plus the "scattered"

T<> x,y! = y  x v! + y  x y,

where

iKx cosh Ky
o ' cosh KD

II. 7

. a .:ill find that Siis representation is non-uniformly

."ear the gaps it will be necessary to find another

solution. ice will solve for the flow in each of these

regions and match them in an overlap domain in order to find

tho complete solution inside and outside of the cylinder.

1 Outside Reqion

Denote the velocity potential for flow in the outside

region by P x,y!. This function satisfies the following

boundary value problem:

V~y = 0 II. 8

II. 9

 x 0! = 0

P x,y ! ~ n x,y ! = 0
s s s s

y ! e II. 11
s

f tnose terms included are much greater than those neglected,
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where x +  y -c! = 1
s s

n=xi+y-z!f.
8 S

Define  x, y' ! such that
S S

 x'! ' + y'! = 1

defines cylinder when c = 0. Then note that

x'=x
s s

and that

Vg x ,y ! ~ A x ,y !

VP  xo yo! ~ R xa yo! + c [Vg xo yo! .R xo yo!

+ ~ ~ ~

Using only the f irst term, write the linear boundary

condition on the surface of the cylinder as

V!  x,y ! ~ A x,y ! = 0 II. 11. 1

y > P

where x~ + y~ = l
s s

Introducing the mathematical order notation  cf. Van

Dyke!, notice that equation IX.12 is valid to o  c! . To com-

plete the boundary value problem add the condition that. the

surface waves far from the object must consist of the inci-

dent wave plus outgoing waves  radiation condition!. If we

separate the function $ x,y! into the incident wave  undis-

turbed flow! plus a scattered wave as



36.

II. 127<=4 +

condition II. 11. 1 becomes

 x py ! ' n  x,y ! = � g  x,y ! ~  x,y !

y ! 0
s

II. 13

Since the boundary condition  II.13! does not specify

the normal velocity at the position  +1,0!, the problem has

not been completely posed.

The use of a matched asymptotic expansion allows us

to replace this boundary condition with a flow singularity,
and to solve the outer solution to 0 o,,!.

The indeterminency of the boundary conditions at  +1,0!

suggests the division of $ x,y! into two parts, one satisfying
homogeneous boundary conditions and one behaving singularly

at  +1,0! . In particular, assume

 x,y! = $  x,y! + A[En r !r ! + Ek x,y!] II. 14

where r
L

whic x represents a regular scattered wave potential plus a

source at one gap and a sink of equal strength at the other

gap. The function 8  x,y! is necessary to satisfy II. 11.1,

and is regular throughout the outside region. The source

strength, A, is naturally a function of the incident wave

parameters and e, and must, approach zero as c decreases l
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Lim A = 0

~~0

The selection of a source/sink combination  II. L4! to

describe the perturbation caused by the gaps satisf ies the

physical condition that fluid must leave the outside region

at one gap and enter it from the other. The selection of

higher singularities may be ruled out, at least to 0  c!, on

the basis of the "Principle of Minimum Singularity"

 Van Dyke, 1964! or, more formally, through the matching of

the expansion for g  x,y! with another expansion describing
s

the flow through the gaps.

This matching procedure is necessitated by the fact that

II. 14 cannot accurately represent tne flow "close" to the gaps

since the source term becomes arbitrarily large as r or r

become small.
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: I. > 1.lee In -ide Region

T»e flow inside the cylinder must satisfy the following

conditions:

II.16.1

 x,o! = 0
By

II.16.2

VQ x ,y !.n x ,y ! = 0 II.16.3

2 + y2 j
s s

y ! 0
S

IZ.16 leads to a trivial result for the case of no gap.

'~ie expect from the nature of the outside solution  I!.14!

that $  x, y! takes the form

P x,y! = 6 + A[/In r jr + J x,y! ]
3. L

!!.17

where B = a constant dependent on

and. the outside flow.

where I1. 16. 3 is the linearized C.oundary condition analagous

to I1.11.
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J x,y! is a regular function necessary to satisfy ZX.16.

Equation IX. 17 also satisf ies the condition of continuity of

flow through the gaps if A is taken to be the same as that

in II.14. In order to find A and 8 the flow through the

gaps must be examined in detail.

IX.3 Flow Ad'acent to Ga s

In order to examine the flow through the gaps it becomes

necessary to alter the coordinate system heretofore used in

such a manner as to magnify the area under consideration,

plished by defining new independent variables.

Y = Y = y/c

X =  x-1! /c
R

XL =  x+1! /g

IX. 18. l

XI. 18. 2

II. 18. 3

Xt should be noted that the selection of this particu-

lar stretching of coordinates cannot be known a priori to be

correct. In particular, the condition required for proper

stretching is that a point corresponding to fixed values of

 X ,Y ! or  X ,Y ! will remain in the "inner" flow region in
i.' L

the limit as r ~ 0  Lagerstrom and Cole, 195'! .

namely, the regions adjacent to the gaps. This may be accom-
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rL =0 e' !l/A II. 19

Thus, i f we consider a point described by

-l/A
R = r e

and hold R fixed while taking c ~ 0, r will always beL L

within a semi-circle wherein the outside solutions are not

valid. It will be shown later that A = 0�/inc!, so that

R. = ../

is indeed the proper stretching. It can be argued on purely

For example, referring to Figure II.2 we can define the

"inner" region as that region where the solutions indicated

by I I. 14 and I I. 17 become invalid. This is the case  using
~h 3 Fj. -~~-~ Aha ~xa~! when A kn r~ = 0 l!, or when



physical grounds, however, that the point  -l, E! must always

be included in the inner region so that any stretching other

than II.18 would be inadmissible. For example, if we had

said

-1/2
L L

or YL = yLe 1/E

the problem for the inner flow velocity potential:

V'f X,Y! = 0 II. 20.1

"  X,o! = 0
gY

II. 20. 2

Vy X,Y ! " X,,Y ! = 0 II.20.3

Again we may linearize the boundary condition on the

cylinder wall. Equation II.20.3 may be written

Vg X,Y ! ~ Vf  X,Y ! = 0 II.21

f X,Y ! =  zX � 1! ~ +  cY - e! � l. II.22
s s s s

where

This function applies to the left gap, an analagous

function applies to the right gap. Expanding II ~ 21,

af  X,Y !  gX -1! + ~  zY -g! = 0
3 tb

a � s' s s 3Y s

the point y = s does not, correspond to a fixed V for s ~ 0.

Given the change in coordinates II.18, we can formulate
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and expanding the whole expression in a Taylor series about

x = 0,
S

� 0 Y ! + c Y -l! � Y !
B <f> B>s
BX BY

A

2 Q B

+ X c  O,Y -  O,Y ! + s Y,-l!�
BX BX' BXB

+...=0

Noting the f  x,y ! = 0, from II.22 we see that
s s

 Y,-l,! '
X = c 2 +0  !

S

and may thus conclude that II.20.3 may be written

'~ O,Y! =0,
BX

II.20.3.l

which is valid to 0 E! . Thus to the same order linearization

as the outer problem, the inner flow may be characterized as

the flow through a slit in a vertical wall  e.g., Tuck,

l969! . We may now proceed to solve the "inner" problem and

the "outer" problems in each region.
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III. SOLUTION

III.l Solution for the Outside Re ion

We may first consider the function ! x,y! which satis-

fies II.S-IZ.11, the function !  x,y! defined by II.12 satis-

fying II.S-II.10 and II.13, and the function g  x,y! defined
Bo

by II. 14. If we take the limit of II. 14 as c -+ 0, recogniz-

ing II.15, we obtain

 x,y! = lim !  x,y!
cm0

 not uniformly valid!
Thus $  x,y! satisfies II.S-II.10, and II.13.

so

III.1

In par-

ticular, write II.13 in the limiting case c ~ 0 to obtain

 x,y ! ~ 6 x,y ! = -Vg  x,y ! -6 x,y ! III.2

y > 0

 x,y! is simply the scattered potential outside the
so

cylinder for the case of no gap, and may be solved by the

Although the statement of the problem to 0 c! as dis-

cussed in Chapter II is straightforward, the exact solution

is difficult, if not impossible to obtain. Various approxi-

mate methods exist, however  viz., Milgram and Halkyard,

1971!, of which a direct approach will be used in conjunction

with a modeling scheme to account for the gaps. The accuracy

of the results will thus depend on the accuracy of the numer-

ical scheme employed.
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representation for 4  x>y!:
so

ay  r!
 p! 2 ~so«! ~ p I r!-«p Ir! > de- III

where F =  x,y!

p =   .q!

 r!
G p ~ r! > dX- r!  p   r! dm � -�

so Bn r m

1
 p!

so 7r

III.8

The second term of III.8 is known since both G p!r!

and 3!  r!/Sn are known. The equation may be solved numeri-0

cally by dividing the cylinder into a finite number �! of

elements, such that the point r. represents the midpoint of
L

each element.

r. =  cos8., sin8.!
i i

III.9

6. =  i-1/2!m/N
3.

i = 1, 2~ ~ ~ ~ p N lg N

III.8 may then be written in finite element form

N

7 K .. <j> + F
so. ~ ij so ~ So.

j i=1 i
lII . 10

The integration is performed over the cylinder surface

assuming a unit axial dimension. Introducing III.2, and let-

ting p approach the surface of the cylinder, we obtain:
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where K.. = � 7G r.r, ! -6.ij N j i i
<i 8 j!

F = � � $ G r. ~r.! VQ  r.! ~ A.
so. N j x o i

3

of the regular part at, the point r. ~

Rewriting III. 10 yields

N
� ..-K..! = F

i=1 i
so lj 13 so.

3

III. 11

which may readily be solved by matrix inversion or least

squares techniques. A value of ¹35 provides a numerical

accuracy of better than 1% for all frequencies of interest.

Computation time for these cases averages less than one

minu te.

It will be convenient to define the following

quantities:

~so ~so
N

lim III.12.1

r~  -1,0!

~so ~so
1

lim III. 12. 2

r~�,0!

It remains to determine the function H x,y! which, as

was pointed out earlier, represents a regular function

The value of K.. is found by separating VG r./r.! into
l. 3. 3

a regular part plus a singular part, integrating the singular

part analytically over the i element, and adding the value,th
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necessary to insure that the second term of XI.14 satisfies

the boundary conditions. The function in r /r ! + H x,y!

a

3y L RL rR + H x,D!] � � k L R + H x,D!] = 0R

g

III. 11. 2

[RnI 1I + H x 0!] = 0 /xf ! 1 IIX. 11. 3

[jn,n r /r ! + H x ,y !] = 0 IxI   0 III.11.4

Recalling the definition of the Green's function,

G x,yj ,q!, we may write

Rn r /r ! + H x,y! = G x,y J-1,0! � G x,y I 1,0! + F  x,y!
IIX. 12

Noting the conditions satisfied by G  x,y    , q! in

XXX.3.5, we may then find the conditions satisfied by F x,y!

by substituting III.12 into XII.11:

V~F  x,y! = 0 IXX.13.1

3F xiD! u R F xD! = 0
>Y g

III.13.2

BF  x,0!
3y  x! XXX.13.3

a a
I II. 13. 4

� F x,y ! = � [G x,y 11,0! � G x,y I 1 0! ]Bn s' s an s' s 8 S

may actually be considered the sum of two Green's functions,

that for a source at  -1,0! and for a sink at �,0! satisfy-

ing the following boundary value problem

V [kn r /rR! + H x,y!] = - 2m[6 x+1,y! - 6  x-l,y! ] XXI.ll. 1
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F x,y! must also satisfy the radiation conditions.

Applying Green's theorem to the region external to the cyl-
inder, and allowing the source point to approach the cylin-

der's boundary in the same manner as III.8, yields the

integral equation for F x,y!:

F p! = - r J F r! >~  p r! der

+ � J G p[r! > [G r r ! � G r r<!] dr

where

Since G p ir! is a known function, equation III.14 may be

solved in the same manner as III.8.

Writing

G x ylt n! = jan r + g«,yl  n! ~

we obtain

H x,y! = g x,yi-l,0! � g x,y! il,0! + F x,y! III.16

which may be calculated directly once F x,y! has been com-

puted. For convenience, we will denote

= H l,o!
R

H = H -1F0!

III.17.1

For the purposes of matching, it is convenient to calcu-

late H -1FO! and H�,0!. From III.3.2, we see that

H x,y! = G x,y! ~-1,0! � G x,y I 1,0! + F  x,y! - kn r /r ! III.lS
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III.2 Solution for the Inside Re ion

The flow inside the cylinder takes the form indicated by

equation II.l7:

$ x,y! = B c! + A c! j.kn r jr ! + J x,y! J II. l7

IJ x,y ! n x,y ! = lan r /r ! .n x,y ! III. 18

x2 + y2 j
s s

The function J x,y!, like H x,y! in the outside region,

is required in order to satis fy the boundary condi tion on the

s ur face o f the cylinder:
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This can be evaluated by ~ observing that

A
n x,y ! = cos 9 i+ sin 0 j

S S
y ! 0

s

y = 0

Also, writing again

r
L

rR=

we get

Can r jr ! = [i B + j � ] kn r /r !Bx By

1 L 1 R[ � � - � � ] i
rL Bx rR Bx

BrL 1 BrR
+ � � � ]

r By r By

x +1

[~
rL

x -1

+y[, �,]
R L R

Now rewrite the boundary condition, III.18,

x +1 x -1
S SVJ x,y ! 'n x,y ! = cos8 [~ � ~] + y sin6 [~ � ~] .

s s s s r R
S

L R

y ! Q
s

Letting x = cos9 and y = sin6, and. applying the law of
s S

cos ines:

r ~ = 2  l � cos8!
R

rL = 2 l + cosO!,

where the normal direction is taken outward from the region.
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we can write

cos&+1
VJ x ,y ! ~ n x ,y ! = cos& [

s' s s s

sin e cos &+1 + cos &-l
+ 2 [ cos & 1 1

= cose � cos& = 0 III.19

y 0

Hence we arrive at the conclusion that J  x,y! satisf ies

the homogeneous Neumann boundary condition on the surface

x' + y = 1. This could have been deduced immediately by
s s

simply noting that the circular shape o f the cylinder corre-

sponds to a s treamline for the source/sink combination repre-

sented by Rn rL/rR!  Lamb, 1945, p. 70! . Since the x-axis
 y =0! also represents one of the streamlines for this motion,

we arrive at the fortuitous conclusion that J x,y! satisfies

the homogeneous boundary condition over the entire inside

region. J x,y! is at most, therefore, a constant, which can

be set equal to zero with no loss of generality.

For the present it will be instructional to include

J x,y! in the analysis, even though its value is zero for the

circular cylinder. For other shapes its value will obviously

be non-zero  except for other shapes which correspond to

source sink flow lines!, and some numerical scheme  such as

the integral equation method! would have to be employed to

find its value. Assuming that this can be done, we will

denote:
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J.. =. J  -1,0! III.20.1

1II.20.2

Tnese quantities will be necessary in the matching

procedure.

III.3 Solution for the Inner Flow

The flow through the gaps was shown in Chapter II to be

equivalent to 0 a! to the flow through a slit in a vertical

barrier. This result follows from the coordinate stretching

II.18, and is represented in Figure I1I.2.

By tne method of images, this flow can be found by

replacing the rigid boundary Y=O by the image of the vertical

barrier x=O, y > 1,  Figure III.3!.



Since the curvature of the cylinder does not enter this

problem, the flow through either gap is identical.

To evaluate this flow, map the region shown in Figure

III.3 into that shown in Figure III.4 by using the following

mapping function:

Z = -i cosh

where Z = X + iY

The numbered points in Figure III.3 map into the corre-

sponding points of Figure III ' 4.



:!ote that f or   along the real axis in the   � plane, or

the line q = vr, Z  q! lies along the imaginary axis in the

Z plane. The points   = 0 and t = im correspond to the

edges, Z = -i and Z = i, respectively. If we introduce the

complex velocity potential, N Z!, such that,

dW  Z!
u + iv

dz

BX 3Y

dWI Z  q! J
dg dZ

t,e obtain t'ie expecteD result that the velocities become

in' ini te at the edges, since

i

WZ sinhq
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becomes infinite at these points  assuming dN/dg takes on

non-zero values there!.

The q axis in the <-plane between q = 0 and rl = v, cor-

responds to the gap  -l < ImZ < +l! in the Z plane. Passing

through this line in either plane must correspond to passing

from one side of the gap to the other. 1n order to show

this, write

a+ i8

so that, from III.21,

Z = s inhu s in' � cosh' cos l3 .

Now with 0 < 8 < z, the region a < 0 corresponds to the

lef t side of the gap  Re Z < 0!, the region x ! 0 corresponds

to the right side  Re Z ! 0! . Figures III.3 and III. 4 indi-

cate these mapping regions.

The flow in the g-plane corresponding to flow through

the gap in the Z plane thus becomes simple streaming flow:

W g! = Ug+ C,

which, upon substitution of   from III.21 becomes

-l.
W Z! = U cosh iZ + C ~ III.22

<j> X,Y! = U Re [cosh iZ] + C III.23

This form is also given by Lamb  op. cit., p. 73!. U and

C must be found from matching. In order to compare III.22

with the outer expansions, both inside and outside the cyl-

inder, write the potential as
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where U and C may oe complex  reflecting the phase of the

flow! and functions of

pent=-.:ne: ow � =nrougn ~ gap

III.4 Accurac, of the Solutions

shown that it represents as

of the cylinder to o E! .

,pter and the preceding chapter

:entials in each of the areas

outside the cylinder and

an approximate error of

.ts, therefore, will be

.rived herein do not take into

ie finite thickness of the

.come important for small c.

in detail in a later chapter.

+ ~~qjj le egg/tj/n' jg f t .

in an infinite barrier, we ha

well the f low through ei ther

Thus we have derived in this

expre s s ions f or the velocity

of interest  inside the cylin

adjacent to each gap! to with

0 s!. The accuracy of the rc

limited by the size of the ga

In addition, the results

account real fluid effects ox

cylinder wall � both of whicl;

These effects will be discuss
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IV. MATCHING THE SOLUTIONS

The method of matched asymptotic expansions is treated

by Van Dyke �964!, Cole �968!, and in considerable detail by

Lagerstrom and Cole �955! . The particular problem of concern

here, that of flow througn a small aperture, has been treated

by Tuck �97l! in finding the reflection and transmission co-

efficients for a vertical barrier with a submerged slit. The

method used by Tuck is virtually the same as that used here,

and it is instructional to consider his problem in some

detail. Appendix A includes, therefore, a discussion of

Tuck's problem using the alternate matching schemes. Newman

�967! used an identical matching technique to compute the

flow past a ship of large draft in shallow water. Widnall

and sparrows �969! used a more complicated, but straight-

forward, matched asymptotic expansion scheme to find the lift

on two-and three-dimensional wings in ground effect.

Before turning to the explicit solution of toe problem

at hand, it may be helpful to review the rationale behind

employing the method of matcned asymptotic expansions and the

basic techniques of its implementation.

First, we have assumed that the correct solution for the

flow has been altered only slightly by the occurrence of a

small gap at the cylinder edges. Solving this problem in-

volved the postulation of a perturbation potential, j>  x,y!
s

which would approximate the correct correction for the gap
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for finite values of s, and would approach the exact. correc-

tion asymptotically for small c.

In particular, if p  x,y! represents the exact, solution
p

for our problem  which we cannot, calculate!, we have shown

that the solutions derived in Chapter 1II approximated p
P

with an error of 0 s!, or, in other words,

 x,y! � $  x, y!
Klim

v~0

IV. 1

The above limit states that the error, for suf ficiently

small values of z, is directly proportional to c. This is,

in fact, the precise definition of what is meant by the

asymptotic representation

4  x,y! = $  x,y! + 0 c!,
p

 cf. Lagerstrom, l957! .

We have further postulated that the correct form for the

function 4  x,y! is that of a source/sink combination plus a
s

regular function of  x,y!, as indicated by II.14. This solu-

tion satisfies all tne conditions of the problem  Chapter II!

except that it does not provide the correct representation of

the flow near the edges of the cylinder, thus leading to the

fact that IV.1 becomes invalid in those regions. Secause of

this, the complete problem cannot be solved, even to o s!,

where $  x,y! is represented in II.14, and K is some constant
s

wnich numerically is of order unity.
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without special consideration for what goes on in the vicin-

ity of tne gap.

This leads to the formulation of the "inner" problem to

describe the flow through the gaps  Section i1.3!. The

inner problem results from a coordinate transformation and

stretching which magnifies the region of non-uniformity  the

region where ZV.1 is not valid! so that the perturbation

potential becomes a first order function. That is, while the

effect of c on the "outer" solution  Zl.l4! is presumed small,

its effect on the inner solution is, by definition, of 0�!.

Both the "inner" and the "outer" problems are incomplete.

The outer problem does not specify a boundary condition at

the edges of the cylinder, and the inner problem does not

specify the boundary conditions far from the edges. The corn-

plete solution cannot be found, therefore, without the added

condition that both the solutions match within some inter-

mediate region.

This condition implies the existence of an "overlap do-

main". That is, there must be a region in which both the

outer and inner solutions are equally accurate representa-

tions of the exact solution. Ne may illustrate this with

reference to the present problem. As we have seen, the

"outer" solution  both inside and outside the cylinder! con-

sists of log terms plus regular terms:

 x,y! = A[an r /r ! + H x,y!] + $  x,y!
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Approaching the left gap from the left along the x axis

yields

 x,o! = A ltn ~~! + H  x,0! ! + t!  x,o! IV.2

Near the point x = � 1 the log term becomes singular, but

the other terms are well behaved. tJe can therefore expand

all terms except the log in a Taylor series about x = -1:

 x,0! = A[En x+1! � kn�! + H -1,0! ] +  I!  -1,0! +
s so

lim x~-1 IV.3

which may be written

 x 0! = A[in x+1! + Q ] + P +
s L

lim x~-1

IV.4

and P are the constants indicated by IV. 3.
L

Equation IV.4 holds, of course, no matter which patl.

chosen to approach the gap point, provided  x+1! is replac

As we have mentioned, the above solution is non-uniform,

since our assumption that  I! approaches the exact scattered
S

potential for v~0 is not valid when ~x+1 ~ becomes too small.
- 1/A

This is the case when x+1 = 0  e !, since the term

A t,n x+1! then becomes 0 �! . On the other hand, for suf fi-

ciently large values of ~ x+1 ~ the Taylor series  IV. 3! must

»»»»»» t i i� ' '  W»7  ri »   r i X7 i  ."'-. P at CiU".-.=  ~mr  ?lQ. ~I ..!-.~5" <5i'." :QJJ-,.PC!'!uv-'-'-"-=gt ' '..., wary! q,;»».w,-.-»

~ x+1 = 0  A!, f or example, the error incurred in truncatir

the Taylor series is equal to the term of interest, namely

tne leading term of IV.4.
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by r . For the present we will stick to the x-axis, however,

since the purpose here is to illustrate the method. For the

say tnat this expression is valid to 0 A!, provided

e < ~x+1~ < A .

Turning our attention to the inner solution,

$ X,Y! = C + A Re cosh iZ

We may also examine its value along the x-axis:

� 1
$ x,0! = C + A Re cosh ~X

$ x,O! = C + A Re cosh i ~x/c

For sufficiently large values of ~ X~, IV.5 becomes

IV. 5

 see Appendix C!:

1
$ X,O! = C + A kn2X + 0  !
lim X~~

ZV.6

Rewriting IV. 6 using outer variables yields:

2

P  x,0! = 3 + A [kn  x+1! + Rn2 � Rnc] + 0   !
lim I x+1I

IV. 7

Tnis expression will be valid to 0  A! provided x+1 I

TV

general case, g  x,y! is referred to as the "inner limit
lim

rg~O s

the outer solution". Speaking in terms of IV.4, we can
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l/ritinq the potential

$ x,y! = C + A[Re cosh iZ] IV.9

and t;-. condition on the -urface o= the cylinder t.>at there

oe no veloc't... normal to the surface:

C$ x,y ! ~ n x,y ! = 0
s s s s

where x~ +  y -E! ~ = I

In addition to the requirement that ~ x+1 ~ > c for the

asymptotic orm IV. 7 to be val' d to 0 �/Rne!, we must also

recocgni ze that the corn-, lete ' nner solution, IV. 5, i" only

valid '.or values of r  or r<! close to the gap, i.e.,
L

rL < y ~! .

In this reaard we observe that, in particular, the cur-

vature of the dome is not accounted for in IV. 5. ice must ob-

serve, there f ore, at what radius the error in the wall boun-

dary condition becomes 0 E!.
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iNow, le t

f y ,e! = error in boundary condition

S 5g x,y ! n x,y ! IV.ll

>U Z! = cosh iZ IV. 12. 1

1 dw  Z!
Z

U+ iV IV. 12. 2
where

U
Bp
Bx

IV. 12. 3

v= B>
By

IV.12.4

Z=X+iY

Now we may evaluate f  y,e! as
s

s dW Z!
IV. 13f y,e! = A Re

where z = x � i  y -e!
S S s

Now

, -1
1 dN Z! 1 d cosh  iZ!

dZ E dz
IV.14

where use has been made of the coordinate stretching

z = cZ + 1.

So we may now write

It will be more convenient to evaluate this expression

using complex variables. Thus, since we are only concerned

here with velocities, represent the complex inner potential
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f y,c! = A Re

Expanding f or small c yields

If we insert the values of z and z, and take only the
S s

real part, we obtain

l + 2Ey � c � 2y
s s

+ y
s

f y,s! = A
s 2 + 2Ey � s � 2

s

We find from this that lim f  y, s! = 0, as it indeed
y S

c y -s!
f y,c! = A -" Ac y -c!

  1+a !

IV.]5

when only the first term of the Taylor series has been re-

tained.

If we match solutions to 0 ~1!, the inner solution

remains valid to f y ,c! Q l or, from IV.15,

~r = c. Wn Ic-

We have noted that the outer solution becomes invalid

to 0�/Rnc! for rl, rR! = c, since the second term of II.14
becomes the same order as the first. The region between

should since the edge of the cylinder is exactly vertical.

To f ind how this error function behaves for y > e, expand inS

a Taylor series about y = c. This yields
s
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r = E and r = c + a /E = c + l/cine is therefore an over-L L 1

lap domain wherein both solutions are equally valid.
Matching, therefore, is accomplished by simply setting

these two limit processes equal. It is interesting to note
that the discovery of the precise regions of validity of
each solution confirms here the existence of an overlap re-
gion where both solutions are equally good, thus justifying
the matching to be carried out here. In general the method
would work even if there weren't an overlap region, due to
the existence of an "intermediate" region lying between the
inner and outer regions in which another solution  found by a
suitable intermediate stretching of variables! may be found.
By tne Kaplun extension theorem  Kaplun, 1954!, both the

inner and outer regions would overlap into this intermediate
region thus perrni tting a double rnMrh'.v~ a~@ a+~"~n:~~t-ri~:.:--~=

r.f:e armer and u 'er solute:ofris'-;=-'=f f-'-''

It is also important to note the distinction between the
itching of two solutions valid in adjacent regions, and the

atching" of two solutions. This latter method, used, for

ample, in finite element calculations, is accomplished by
lecting � boundary common to two regions, and adjusting the
lutions in ach region so that the numerical value of the

o solutions  or their derivatives! are equal on that

undary.

b1atching, on the other hand, is based not on the exis-

nce of a common b~oundaz, but of a common ~te ion of
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Figure IV.2 shows possible plots of the outer and inner

solutions  IV. 4 and ZV. 7 respectively! for the potentials

along the x � axis.

tcnin Schemes ZV 1;ie ristic vs. Formal

nt P< or 8" in the inner region

! or  l,0! respectively as

points r~ or r" remain a fixed

Ãe have seen that a

moves t oward the point  -

decreases. In addition,

validity. The two solutions must, of course, agree numer-

icall; throughout this common region  to within a specified

accuracy! but must in addition  or as a consequence! be of

the same functional form.
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distance from  -1,0! or �,0! as c decreases. We are thus

led into the dilemma that the two regions of validity  the

"inner" region associated with R or R, and tne "outer"

region associated with r or r ! may not remain overlapping

in the limit as c ~ 0, since R" and R~ decrease as r* and r"
L R L R

remain fixed.

This problem has been associated with thin airfoil

theory  Van Dyke, 1954, Chap. IV! and with low Reynold's num-

ber flow  Kaplun, 1957!.

It should be noted, in this regard, that one may view

these matching problems from either a heuristic or a rigorous

point of view, depending on one's purpose. The method

employed by Tuck �9 71! and Newman �967! may be classified

as "heuristic", or, as Tuck has stated, "semi-intuitive".

The heuristic, or semi-intuitive, method may be con-

ceptualized as follows  with credit to Professor Tuck!: The

inner flow may be described as that seen by a near-sighted

"midget" seated in the middle of the gap. He is unaware of

either the existence of the free surface or the shape of the

cylinder  its curvature!, and must conclude that he is simply

experiencing a steady motion through an aperture in a straight

barrier with no other factors affecting the flow other than

the size of the gap and his own presence  wnich we ignore!.

If the midget views the flow far from the gap, through a tele-

scope, say, he will see that the flow on one side is streaming
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toward him like a sink, and on the other side the flow is

disappearing in a sourcelike fashion. Even with a telescope

the midget would not be able to detect the subtleties of the

outer flow such as the free surface.

The outer flow, on the other hand, may be considered as

that seen by a farsighted giant who is, perhaps, lying face

down in the water. The giant is capable of determining the

shape of the object  the cylinder!, and can feel the effect

of the free surface, but he cannot see the gaps at the edge

of the cylinder. He does, however, note that, fluid is leav-

ing his field of view at one edge of the cylinder and appear-

ing at the other, but he is unable to see the flow through

the gap. If the giant puts on a set of spectacles, he is

able to perceive the details of the gap flow only to the

extent that he can verify that there is indeed a source at

one gap and a sink of equal strength at the other.

The heuristic matching process simply states that the

flow as seen by the midget with the telescope must be exactly

the same as that seen by the giant with his spectacles.

This approach to matching is usually referred to as the

"limit matching principle", and is usually stated as follows:

The inner limit  of the outer limit!

the outer limit  of the inner limit!

Lt was first used by Prandtl to solve the problems asso-

ciated with the boundary layer effect on inviscid flow models.

Its success hinges largely on the existence of an overlap
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domain wherein the two limit processes described above do

actually apply, although it may succeed even in cases where

no overlap domain exists.

nzbn.; �; ~='-v~rz~: ra ~ihbei~~:tevn~a'z-.i ~u~beh noe-hba~~we;.mixen

of the inner and outer limits, and which may be matched to

each o f the two previous limi ts, there f ore providing a link

between the inner and outer solutions. This region spanning

the "gap"  not the "gap" in our problem! between the inner

and outer regions is known as the "intermediate region". It

is obtained by introducing a coordinate stretching similar to

the inner coordinate stretching, but not as strong, which

would allow a variable in the intermediate region to remain

between the inner region and the outer region as s + 0.

To see how this works, let us define an intermediate

variable for our problem as:

1
/z

L

1
r pc~~

R

IV.23.l

IV.23.2

Now, if we select a point r*  dealing with only the left

gap does not alter the generality of the discussion! which is

some distance from the gap  -1,0!, the same point written in

intermediate and inner coordinates becomes:

A more rigorous and satisfactory solution was preferred

by Kaplun  l957!. According to Kaplun's extension theorem,

even when no region existed in which. both the limits described

above were valid, there must exist another solution limit
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lgr»/g /2

L

R* � r*/g
L L

and.

And if we solve the appropriate problem in each of the

regions  with the appropriate coordinates inserted into the

equations of motion and the boundary conditions!, we obtain

three different solutions:

C rL! outer solution

g  R»! intermediate solution

y  R»! inner solution.

If the asymptotic expression of each of these solutions

is found by taking the limit as ~ ~ 0 with r*, R» and R»

fixed, respectively, we discover that the three points  in

each region! do not remain a fixed distance from the gap

 -1,0!. In particular, rL» remains a fixed distance from the
1/gap, R» decreases like s and R» decreases like c. Thus the

three points separate, the "inner" point approaching the gap

faster than the intermediate point, and the outer point

remaining fixed. It appears that, without Kaplun's theorem,

the heuristic approach would be subject to considerable doubt.

The success of the heuristic approach depends on the nature

of the problem and on the dependent variables used in the

matching. It works, for example, for the tangential ver.ocity

in a boundary layer but not for the normal velocity  Van Dyke,

1964! .
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IV. 2 Matchin b Means of an Intermediate Solution

w~ wil 1 herein write the matchinq equations for the
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Write in intermediate variables for Region 1

-l
C + A Re cosh [iuR /c] IV.25.2

Take limit u ~ 0, R fixed

CL + A [2,n2uRL � Rns] IV.25.3

Now IV.24.3 and IV.25.3 must be equal, so we set

 -1,0! + <I>  -1,0!, HL = H -l,0! and write

+ A[knR + knu � Rn2 + H ]
L

C + A [knR + knu + in2 � P ne]
L

IV. 26

= C + A[2kn2 � in~ � H
L L L

IV.27

We get similar equations in each of the four intermed-

iate regions.

Outer Solution

B + A[En r /r ! t J r! ] IV. 28. 1

Write in intermediate coordinates for Region 2

uR +2

+ A[En  ! + J uXL-l,uYL! ]
up

IV. 28. 2

Take limit u ~ 0, R fixed
L

B + A[kn2 � RnaRL + J -1,0! ] IV.28.3

from which, by noting that the knR and knu terms cancel, as

indeed they must, we arrive at the equation
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Inner solution written in intermediate variables

C + A Re [cosh  iaR js]

Take limit e ~ 0, R fixed

C � A[kn2 � kne + knmR j
L L

Equating IV. 28. 3 and IV. 29. 2 yields

B = C + A[-2Rn2 + Rnz � J ]
L L

T � �.� ~ ~ q ~  ! !w j Eel. cP

.yR
[Kn  ! J  uX +1, aY j--=+--A

Take limit a ~ 0, RR fixed

B + A[tnaR � kn2 + J ]

where J = J �,0!
R

Inner solution written in intermediate variables

CR A R«osh  iaRR/E!

Take limit a ~ 0, RR fixed

CR+ A [kn2 � kn< + kn~RR]

Equating IV. 31. 2 with ZV. 32. 2, we obtain

B = C + A[2kn2 � inc � J ]
R R
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~eceion 4

 uXR+l;~Y ! + 4   xX +l,aY !

 x Ti- + 2

+ A [Rn
>-'R

! + H  >XR+l, xYR IV. 34. 1

Take limit a ~ 0, R fixed

$R + A[kn2 � kn+R + H ] IV.34.2

where f = 4 �,0! + $ �,0!

H = H l,0!

Inner solution written in intermediate variables for Region 4

C + A Re [cosh  iaR j~! ] IV.35.1

Take limit a. ~ 0, R fixed
L

C � A[tn,n2 � Rnc + RnoR ] IV.35.2

Setting IV.34.2 equal to IV.35.2 yields

= C + A[-2kn2 + inc � H ]
R R R

IV.36

From the above we extract four matching equations to

find the unknown constants:

= C + A[2kn2 � Knc � H ]
L L L

IV.27

3 = C + A[-2kn2 + Rne � J ]
L L

IV.30

3 = C + A[2Rn2 � !Inc � J j
R R

IV. 33

C + A[-2kn2 + inc, � H ]
R R R

IV.36

Outer solution written in intermediate variables for Region 4
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Solving these equations results in the following expres-

sions for the unknowns. The algebra is simple, and is

omitted here.

IV. 37

8kn2 � 4
.nc + H � H + J � J
R L L R

L R A3 = + � [H � J + H � J ] IV. 38

B+ $ + A[H + J ]
IV. 39C

L

8 + $ + A[H + J ]
IV.40

IV. 3 Discussion of Natchin Results

N

A = ! A / inc,!"
n=1

IV. 41

where

A =  8Rn2 + H � H + J � J ! /4
n R L L R

This suggests that a step by step matching procedure

could have been used to obtain the same results. Appendix A

discusses the problem of a single slit in a vertical wall

using both a step by step method and a "block" matching

process  i.e., the heuristic method!.

These equations confirm the results of the previous

section, i. e., that A = 0 �/inc!, as indeed it must in order

for the matching to work. It is interesting to note that the

value of A could be written in the form of an asymptotic

expansion in 1/Rnc,.
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The constant 3  eqn. IV.38! is of some interest.

Although its value has no effect. on the flow, either inside
or outside of the cylinder, it represents a pulsating pres-

sure which is felt throughout the inside region. It thus

takes on a primary importance in the calculation of the ver-

tical force on the cylinder.

Furthermore, since 8 takes on a first order value equal

to 1/2 $ + ! !, we are confronted with an apparent paradox.

In the limit c + 0, 3 remains a fixed 0 l! constant implying

0 l! pressure fluxuations on the inside of the cylinder for

no gap. For the original zero gap problem, however, we assume

that there is no pressure fluctuation on the inside of the

cylinder. This would indeed be the case for the idealized

model, since there would be no explanation for the coznmunica-

tion of pressure from the outside region to the inside region.

The inside of the cylinder could not "know" what the behavior

of the fluid was outside, or, indeed, whether there was any

fluid on the outside whatsoever.

This behavior may be explained by considering the

incident wave as the sum of two standing waves, a symmetric

part and an asymmetric part. The first order pressures at

the left  p ! and the right  p ! gaps due to the symmetric

and asymmetric parts respectively may be written

p = p cos  ~t+m! + p sin  zt+g!
L sym asvm

p = p cos  vt+o,! � p sin  u>t+l3!
R sym asym
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The symmetric part of this pressure will not drive any

flow through the gap. The inside pressure in phase with the

symmetric outside pressures must therefore be simply p
sym

On the other hand, the asymmetric pressures will induce

motion through the cylinder but will cause no constant

pressure rise in the inside region.

The calculation of forces will be discussed in more

detail in Chapter V. We will turn for the moment to another

look at the matching.

ZV.4 Uni u.=ress of Matched Solution

The present problem may be treated without resorting to

the matching procedure. We could, for example, treat the

cylinder as a two-dimensional body immersed in a moving fluid

and calculate the scattering by an integral equation method

 see, e.g., Wehausen and Laitone, p ~ 533!.
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3y this method we would find that, the cylinder could

be represented. by a vortex sheet coincident with the cylinder

surface. Tie strength of the -beet would equal the differ-

ence in tangential velocities across the surface of the

cylinder ~

Unf ortunately, no method exists f or solving this integral

equation exactly. If one did, we could in principle evaluate

it for small ~ by expanding about z = 0  where the vortex

strength becomes proportional to the outside tangential

velocity!. As it is, the solution must be found numerically.

numerical solution would, however, become insensitive to

small changes in c for small gaps, and would not be practical

for the range of gap widths of interest.

The formulation of the problem in terms of a body

immersed in a fluid -raises some theoretical questions about

the matching scheme, however. In Chapters lI and. III we

formulated the problem for three separate regions. Each

region is simply connected, and the solutions formulated are

unique.* The formulation of the problem as a body immersed

in a single region represents flow in a multiply connected

*The proof of the uniqueness of the solution derived via
  r en's "heorem is given in any book on partial differen-
tial equation-  e.g., Garabedian!. It should be noticed
that tha uniqueness property does not pertain to the eigen

unctions characterized by the singularities at the edges of
t'ae cylinder. The elimination of higher order singularities
rests on energy arguments and on Van Dyke's "principle of
least singularity".



region, however. Flow in a multiply connected region  such

as flow past an air foil! cannot be uniquely specified by

Laplace's equation and the boundary conditions. Such flow,

satisfying all the boundary conditions, may contain an

undetermined amount of "bound" vorticity  vorticity which

does not travel with the fluid particles! which is mani-

fested by a fixed circulation, I', about the body  cf. Lamb,

$49! .

In order to arrive at a solution in a multiply connected

region the circulation I' must be specified. The problem as

put, forth in Chapter II appears to be incomplete, there-

fore, since no value for I' is determined, and since we have

already seen that the problem is conceptually equivalent to

a cylinder in a fluid region.

The resolution of this dilemma, and the justification

for the matching scheme, rests on the fact that the total

circulation about the cylinder has implicitly been set equal

to zero by the matching itself, as can be seen from the

following discussion.

The circulation, I', is defined as the integration of the

tangential velocity around a closed loop.



If the motion is irrotational and the loop C is drawn so

that the region inside the loop is simply connected  i.e.,

free of any bodies!, I' must equal zero. Zf, on the other

hand, the loop contains a oody, the value of I' cannot be deter-

mined from potential theory.  Zt- value for air foil problems

is fixed by an empirical observ-tion that the aft stagnation

point moves to the trailing edge of tne foil. This condition

is called the Kutta condition � see L. Prandtl and O. G.

Tienjtens, Figures 42-51.!

ln order to fully specify the problem set up in Chapter II

we must tnen specify the value of I' as defined by ZV.42 to be

zero. The rationale for selecting this condition rather than

involving t]e Kutta condition  saying the trailing edge is a

stagnation point! is discussed in Chapter VZ with regards to

the experimental results.

Figure IV.3 shows the path of integration drawn about the

cylinder a distance ~ off the bottom.

The points 1, 2, 3, 4 are located in the "intermediate"

regions. Zn order to perform the integration, split the loop

C into four segments: Cl2, C23, C34 and C41, where the seg-
ment referred to lies between tne points designated by the

subscripts. »e may evaluate tne integrals over each of these

seg;ients by noting that, for the line integral between points

a and

dk = g  b! � g  a!ay

a
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We may therefore write

L2 Ll 3 2 R4 R3 1 4

IV. 43

where Q 2, $, $3, etc. refer to the functions g, $, etc.

evaluated at the points 1, 2, 3 and 4  Figure IV. 4! respec-

tively. We may designate these points in intermediate var-

iables: R, R, R and. R4, and write, setting the expression

for 7 equal to zero  eqn. IV. 43!,

i xR2 i sR1
0 = C + A Re cosh   ! � C � A Re cosh  

L F L E

eR
2

+ B + A <n[ ] + J�,0! � B � A Rn[ ] � J -1,0!
2

eR

-1 i>R4 3. QR3
+C +ARe cosh   ! � C � Acosn  

L L C

aR1
+ $  -1,0! + $  -1,0! + A [kn  ! + H -1,0!]

0 so 2

�,0! � $ {1,0! � A [kn{ ! + H{1,0! ]
2

 x R4

Here R. is the radius measured in terms of the inter-
1

mediate variables from the point  -1,0!, for i = 1 and 2, and

�,0!, for i = 3,4, to the point i. This expression becomes

asymptotically valid for small gaps, so, as in the matching,

it is appropriate to evaluate it in the lim c! ~ 0 keeping
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R., i = 1 � 4, fixed. Taking this limit in the same manner as
l.

before we arrive at,

2aR 2ct Rl eR

0 =A � kn  ! � Rn  ! + Pn  R ! + J
C E

2aR 2eR3
kn  ! � J � Rn   � ! � Rn  !

L C F
nR2

OlRl
+ HI,

eR

= A 4knz � 8kn2 + H2 HR + JR JL + ~L ~R

This yields the relationship

A Rnc � 8kn2 + H � H + J � J IV. 44

which is precisely the same result as that found by matching

 eqn. IV.37!. If the circulation is specified I', the source

strength becomes

+ 4R�
IV.45

4knz � 8kn2 + HL � HR + JR JL

Thus the solution found by matching is indeed unique,

and assur;"es a circulation of zero.

IV. 5 Flow Impedance

The question may be raised as to what would be the

effect of altering the gap geometry or the inside flow. The

assumption tnat the cylinder wall has zero thickness, for
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example, is clearly violated in practice. The models used in
the experimental tests had a wall thickness of l/8", the same
order as the gap width.

We may define for this purpose a gap "impedance" which

will indicate the relative resistance of the gap to flow. In
a direct analogy to electrical circuit theory, we can define
this impedance as the potential difference across the gap
required to induce a unit current  flow strength!. If the

point pl lies on one side of the gap and p2 on the other, the
impedance, I, may be defined as

4  P2! - 4  Pl!
IV. 46

If we consider the flow through a gap in a wall with zero
thickness, for example, the impedance may easily be seen to
equal

2r 2r 2r=... g,........+......S..n.....�.-..---- � -:~-~-- � ---.--:

Any cha

example, the

thought of a

lance naturally increases with r  the distance

r of the gap!. The quantity of interest, how-

�aart ~f >he iqn~~wsh~b as iiv~~nda."~-o=

Ne may term this the "characteristic" impedance

9 may write from the above expression

2characteristic impedance = 2kn�
3.p

.l exhibits a characteristic impedance. For

<1culation of A in the preceding section may be

zn application of Eirchoff's law to the "circuit"

The im

from the ce

ever, is th

the distance

of the gap,
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circumscribing the cylinder  Figure IV.3! wherein the follow-

ing impedances have been used:

Section

-2kn2 + HL � H~Outside Dome

Inside Dome

Gaps �!

4kn - 8gn2+ H � H + J � J
LTotal

The first order potential across the cylinder � � 4L!

may be thought of as a battery  a "current independent"

voltage source! hooked into the loop pictured in Figure IV.4.

cI ~ ~ ~ , ~ ~ ~ ~
insid~

E
0

C
c
outsid

Ic + 2Ic
inside gap

-2kn2 + JR - JL

-2P.n 2/c

simple ohm's law for this case.

=omputed as

FIGU!

ELECTRICAL ANALOG

Kirchoff's law becomes

The current, C, may easily j
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which is equivalent to eqn. IV.44. It should be noted that

the introduction of a finite circulation is equivalent to

stepping up the potential of E.

The purpose of elaborating here on the electrical analog

is simply to aid in the conceptualization of the problem. It

becomes easy to see now the effect of altering the geometry of

the gap or the inside region.

For example, consider the problem of a cylinder of finite

thickness. If the zero thickness cylinder represents the mean

line of the finite thickness case, Figure IV.5 shows the

situation.

Provided. the thickness of the cylinder wall is not too

great, the main alteration of the previous result will appear

in the characteristic impedance of the gaps.
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gap will be affected by a change in gap geometry.c

Whether it will increase or decrease depends on the exact

nature of the inner flow, the type of singularities present

at the edges, etc. Guincy �971! has indicated that the

extraordinary transmission properties of the submerged slit

may be eliminated when finite thickness is taken into

account. This suggests that, I gap will indeed increase forc

realistic gaps.

The total impedance may also be increased by the

presence of an obstacle in the inside region. Any obstruc-

tion to the flow will cause the streamlines to come closer

together thus increasing the potential drop along a stream-

line needed to sustain a given flow.

Photographs o f the gap flow  Appendix

factors may be of overriding concern.

:ussed in Chapter VI.

finite wall thicknc

F! indicate that ot

These f actors are c
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V. FORCES ON THE CYLINDER, REFLECTION COEFFICIENTS

Once the velocity potential both outside and inside

the cylinder is known, the calculation of forces becomes

straightforward. Bernoulli's equation for pressure in

unsteady irrational flow may be linearized and written,

noting the nondimensionalization introduced in chapter II
 eqn. II. 4.4!:

V. 1

V. 2 ~ l0  r! = B + A<n  rL/rR!

y r! = y  r! + y  r! + A[ Rn r jr ! + H r! j V.2.2
0 so L R

J r! has been set equal to zero, as it must for the

semi-circular cylinder  Chapter III!. A computer program

on thehas been written to compute g  r!, 4  r! and H  r! on e

sur face of the cylinder.

The total force on the cylinder will equal the integra-
tion of the net pressure over the cylinder's su face times

the appropriate direction cosine. This neglects viscous
influences.

Figure III. 1  page ! shows the cylinder and the co-

ordinates system used. In the notation used before, we

repeat the velocity potentials for the inside and outside

regions respectively:
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~"

C~

o
O.
I�
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The net pressure on the cylinder is the difference of

the pressure acting inside and that acting outside the

cylinder. Thus, for a point  x ,y ! on the cylinder
s s

 r = x i + y j!, the net pressure becomess s S

p  x,y,t! = Re ie [ ! x,y ! � 4 x,y ! ]

o r, writing in complex form

 I  r! = ~ + A~n rR/r<! V.2.l

 I! r! =  I!  r! +  I!  r! + A[En rL/r ! + H  r! ]

J  r! has been set equal to zero, as i t mus t f or the

V.2. 2

semi-circular cylinder  Chapter III! . A computer program has
been written to compute  I!  r!,  I!  r! and H r! on the surface

0 so

o f the cylinder

The net pressure on tlute cylinder is the difference of

the pressure acting inside and that acting outside the cylin-

the net pressure becomes

 x,y,!! = Re [ie  g x,y ! � 0 x .y ! !j
or, writing in complex form

p  x,y ! = i [ I!  x,y ! �  I!  x,y ! J V.3

The net pressure is taken positive in the direction away

from the center of the cylinder. The horizontal and vertical

forces on tne cylinder may now be written as:

Pder. Thus, for a point  x,y ! on the cylinder  r = x i+y j!,
s s s s s
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F. = � cosB B � <f>  r ! � $  r ! + A[2kn rR /rL ! - H r !] dB
0

V.4. l

F = � sinB B � $  r ! � $  r ! + A[2kn r /rL ! � H r ! ] dB
0

v.4.2

where rR � � 2 sin 8/2
Rs

r = 2 cos 8/2
Ls

m cos 6
! + AH r !] dB

o sin 6

i K cos 8

2i ~ n cosh K sin Bn! ecos 6 n

N.
n=l sin 8 cosh K

n

+ $ + AH
so n

n

V.5.1

V 6 2
dt

san--.B:.: ~~

cos 6cos 6
r 7r

  Rs! dB 4iA
r fl

4iA

7r
0

an �/2! d6

sin 6sin 6

The integrals in V.4 may be divided into those which

...as=ad.� he.=czzlna+ad .mi=ariaal!u. and those..xbirb can be esza1-

uated analytically:
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4iA
V-5. 3

where

H = H cos B,sin 9 !n n' n

8 = �  n � 1/2!
n N

n = l, 2, ..., N-l, N

dU

M dt
V.6

where V = volume displaced by the object

C = a mass coefficient, a function
of the geometry and period.

dU/Qt = acceleration of fluid particle at
the center of the object when no
scattering takes place  i.e., when
the object is not there!.

If the point �,0! is taken as the center of the object,

dU -3.
dt

cosh ED

vrRV =  volume per unit length yielding
2 f orce per uni t length!

F
-ipgaKmR~CM

2 cosh KD

V.7

These expressions are evaluated in the computer program

listed in Appendix F. It has been common practice among

engineers calculating forces on ocean structures to use what

is known as "Morison's formula"  Morison, l95l! to compute

horizontal loads. By this formula, the  dimensional! hori-

zontal force on an object. is written  omitting the drag term!:
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Writing in non-dimensional form  eon. II.4.5!

-iKRCM
F

H 7r ~> gaR cosh KD
V.8

The results of the horizontal force calculations are

given in terms of C

i F~ cosh ZD
C

N
V.9

KR

V.l A Sim lified Theor

Consider the case of:<D « l. En this case, the flow is

uniform with depth, and we can replace the free surface

 mathematically! by a rigid wall.

Zf, in addition, we stipulate that R/D « 1, the problem

reduces to that of streaming flow past a cylinder with a

slit  Figure V.3!
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Now the incident flow is simply

Urcos8,
0

where U is the maximum velocity.

As be f ore we may write the total potential as

outside cylinder: p = Ur cos 8 � + R /r ! + Akn  r, /r !L R

V. 10

V ~ 11inside cylinder: $ = Akn  r /r ! + B

The exact first order flow is given by V.10. These

solutions may be compared with those shown in Figure IV.3

 page ! . For this case, H  r! is equal to zero since no

wave terms exist. J  r! is again zero, and we can apply IV. 37
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where g 8! is found by comparing V.14 with V.10, V.ll and

V.12:

SRkn rR/rL!
Q �! = 2R cos 6 V. 15

4knc � 8kn2

For zero gap, we get

F = 2pmR
dU

H dt
V. 16

uns teady motion.

The force with a finite gap will be

d 2mR � 4k � SJL 2 Rn  � ! cos 8 d8d.U

H dt 4knc � Skn2 r
0

R dU 2 16vrR
cit $ 4knc � Skn2

V.17

where use has been made of the relation

Rn rR/r>! = kn tan 8/2!

and the integral has been integrated by parts

From V.17 we can evaluate C for finite values of
M

C = 2
16

M 4knc � Sin2
V. 18

Table V. 1 shows values of C computed for four values
M

of c. C ~ shown in the table is the value of C computed by
N

the computer program  Appendix F ! for

R = v R/g = .001

D = z~D/g = .01

Comparing this with Norison's formula, eqn. V. 6, we find

C = 2.0. This is a classical result for a cylinder in
N
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TABLE V.l

C computed via eqn. V.18

C * computed by program

In addition to checking the calculations of the computer

program, these resul ts show the rema rkab le ch ange in the

added mass due to the gap. For an c of only .001, the force

coefficient is reduced 25%,  the added mass by 50%! ! . This

large drop will be discussed in more detail in the next

chapter in conjunction with the experimental results.

The gaps do not affect the vertical force in this

approximate theory. The source/sink potential is asymmetric,

as is the first order potential. The vertical force, there-

fore, is zero for all values of s, including s = 0. A ver-

tical force can only result when the free surface effect is

included.

V.2 Reflection and Transmission Coefficient

Although the primary purpose of this thesis is to

examine forces on a submerged object, the computation of

transmission and reflection coefficients has also been
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carried out. These results may have direct engineering

application in the design of breakwaters.

We have calculated the flow potential resulting from an

incident wave from the left with a surface profile

q  x,t! = cos kx-r0t!

or, if we separate the time dependence as in Chapter II, we

may de~ote

n != lv !

II. 6
q  x! = e

ikx

0

We may write the surface profile for downstream and for

upstream from the cylinder as, respectively,

Il  x! =7 e V. 19. 1 ~

  ! l.kx g -1.kx
r

V.19.2

where 7 = transmission coefficient

reflection coefficient

1 3C x,D,t!
rl  x, t! g t a

If TI x,y! is the potential outside the cylinder in non-

dimensional form and with the time dependence separated, we

can write the non-dimensional surface elevation

To compute V andR, the amplitude of the scattered wave

for upstream and downstream must be computed. The surface

elevation due to a potential, C x,y,t! may be found from

linear theory  cf. Newman, 1971, Chapter V!



V. 20

The reflection and transmission coefficients may then

be written from V.19:

7 = ie lim $ x,D! V.21.1

e lim i! x,D! - e
ikx ikx

x~

V. 21. 2

To evaluate lim 4 x,h! we may once again utilize Green's
x~+~

theorem  eon. III.7!. If p is a point on the free surface

 x,D!, and r is a point on the cylinder surface  x ,y !, we
s s

may write

p + [R  pL/pR! + H p!!

1 3G l 0 r! �  p lr! « � G p Ir! aa
2m so Bn r 27f Bn r

C C

Taking the limit of both sides for x ~ + ~, we obtain

lim H  x,D!
x~+~ V.22

The asymptotic form of Green's function has been intro-

duced-

G �  p~r! = lim G p~r!
x~+~

+iK{x-xs!
-i2m  K~> '! cosh Ky cosh Ky e-

V.23

K K D � D + g!

where v = ~ R/g

lim $ p! = ie + A
ikx

x~+~

+

 r! '  p r! dZ
C

r
3$ {r!

G �  p~r! dk

C
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The value of lim H x,D! may be found by setting, as we
x~+~

did in Chapter III,

Rn pL/pR! + H p! = G p I p<! � G p l p ! + F  p! V. 24

where p =  -1, 0!

p = �,0!

From V.23, taking  x ,y ! =  +1,0!, we get, after some
s 8

algebraic reduction,

lim [G x,D ~-1~0! � G x,D I 1,0! J
x~+~

-4s  K -v! cosh KD sin 2K e-
2 +iKx

V. 25
K K D � D + v

-Slim Jarred-t uM .� ., ~! Lcm-t be--Emir> nUm~m4~l l.v ~~wm She

values of F p! calculated in the determination of H  !.

cvDo~<~ t'n~rr~m fog lim F  x D! asV5i --. iLi>.- nOl i'm

+iKxs
e�

+iKx
KD e�i  K -v'! cosh

im x, K'D � D

F x,y ! ~ [  i cosh Ky cos 8 + sinh Ky sin
S S

cosh Ky dh  x ,y ! Bh2 x y
] d8 V.26

F p! is computed numerically over the surface of the

cylinder  cf. Chapter III! . Taking the limit of both sides

of eqn. V.24 we find

lim H x,D! = lim [G x,DI-1,0! � G x,D~1,0! + F z,D! ]
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where  x ,y ! =  cos 6, sin 6!
s s

 x,y ! = Re  G x,y I li 0! - G x,y I 1,0! !

h  x,y ! = Im  G x,y ~-1 0! � G x y 1 1

� = cos 6 + sin 6 ~a a . 8
3n 3x ~y

s S

We may write the reflection coefficient in terms of

integrals which must be evaluated numerically.

ik � e s i coshKy cos6 + sinhKy ! $ �!
Q S s so

0

iKxs coshKys!
co s~HS

+ iA e f  i coshKy cos6 + sinhKD sin6! P  x,y !s 's s
0

cosh Kx l s' s . 2 s' sBh  x , ! Bh  x ,y !
s   + i , jid6- 4m sin 2K

K cln
3n

where Q = K D � D + v

The first term in brackets yields the reflection

coefficient for the cylinder with no gap.

Values of k were computed by the same program used in

the force computations  Appendix F!. Figures V.4 and V.5

show the results of these computations along with the experi-

mental points'
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For the sake of comparison, the reflection coefficient

is also computed using a formula derived by Mei �969!. Mei

calculated the reflected wave by writing an integral equation

similar to eqn. III.7 and solving it by means of a Born

approximation  cf. Morse and Feshbach, V. II, p. 1073!.
This method utilizes as a first approximation to the flow the

potential due to Rayleigh for waves over a gentle bottom

slope. This potential is then inserted into the right-hand
side of the integral equation to yield a second approximation.

A comparison of Nei's solution with the e = 0 case

 Figures V.5 and V.6! show the errors introduced in the

assumption of small bottom slope for the case of a semi-

circular cylinder.

The results of the reflection coefficient computations

again reveal a remarkably large gap effect. The reflection
iaeaff~s~nnt 's .-"edu ed >~v alma'+ 50%.,/at KD < 2.,0! for

6 = ,0416.

In the experiments, this corresponds to a gap width of

1/8" for a 3" cylinder. This result follows closely the

results of Tuck in his solution to the transmission of water

waves through a slit in a vertical wall  solved in Appendix

A!. Tuck's solution yielded transmission coefficients as

high as .65 for a ratio of gap width to depth of submergence

of 0.05  Figure V. 7 !.
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Tuck's results have been co~firmed by the exact theory

of Guiney �971! . The extraordinary transmission energy

seems to be due largely to the unrealistic assumption of

zero thickness.

In this thesis, an attempt is made to check the results

experimentally. Figures V.5 and V.6 contain data points

selected. from some 60 test runs made at the M.I.T. Marine

Hydrodynamics Laboratory  see Chapter VI!. Considerable scat-

ter in the data which appears to be linked to a faulty wave

probe leave the reliability of the reflection coefficient
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data in doubt. There does, however, seem to be a definite

trend for the data to take on higher values than those pre-

dicted by the present theory' This result would be expected

.==..-----.-;,�,:-,-; �,.�,*'=,...-.�=--"--.-.-+~<' g, p~+f~ggg~gagp�pngqj,gf 1 pg jggt!gg ggpQgj,gg gnd flow

=he characteristic impedance of the

=low  Plates 7 through 12! do indeed

~t the gaps, thus supporting the

:ts are important at the gaps.

separation would increa:

gaps ~ Photographs of t>

show the creation of jet

claim that real fluid e1

of experimental results appears in A further discussi 

Chapter VI.

sional Structures V.3 Forces on Three-Dir

ade here to solve the problem of

l objects  e.g., hemispheres!.

conclusions based on the results

>e reported herein.

No attempt has bee~

flow past three-dimensi<

Ve may, however, draw sr

for the two-dimensional

althougn no analytic solutions

ical solution to the first order

ast submerged 3-dimensional shapes

y wel3. established  see e.g., Mil-

n et a3.!. These solutions arise

umerical scheme for solving the

for the scattered wave. Where

ith exact solutions, agreement has

d Halkyard. calculated the added

It may be stated t

have been found, the nu

"no gap" problem of flo

of arbitrary form is fa

gram and rIa3.kyard, Garr

out of a straightforwar

Fredholrn integral eguat

comparisons are possibl

been excellent  Milgrarn
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.n a manner

;he inside

<y case.

its about

.ar the

depen-

:rom that

zero to

tugmenta-

1d 1S

small gap

ie object,

~t for the

~e! of the

aisphere

mass of a heaving sphere to within 3% of Havelock's value!.

Such solutions are exactly equivalent to the first order,

or "zero gap", solution found in Chapter III for the two-

dimensional cylinder. There is no reason to believe that the

qualitative effects of a gap about the base perimeter of a

bottom mounted three-dimensional object would not be the same

forces will be augmented by the effects of the gaj

similar to that found in the results of this the,

We have already noted  in Section IV.2! tha

region will experience a first. order pressure in

This being true, we may make the following state~

the forces on a three-dimensional object mounted

bottom.

1! The vertical force on the object wil" diffe

computed for no gap by an amount ranging fr

the full amount of the zero-gap force. Thi

tion is mostly dependent on the wave period

fairly insensitive to changes in the gap wi

2! The horizontal force is augmented by an amo

dent on the wave period and the gap width.

will significantly affect the added mass of

but the effect may be less pronounced than

cylinder since the overall added mass  bloc

three-dimensional object is less  .S for a

vs. 1.0 for a cylinder!.



Generally, therefore, the most crucial implication of

this theory pertains to the vertical force. To examine this
effect the Froude-Krylov force has been computed for a hemi-

sphere with a radius of half the water depth. The Froude-
Krylov force is that force computed assuming no scattered

wave. The pressure is therefore

iKxe cash Ky

cosh KD

which may be integrated over the surface of a hemisphere

 times the respective direction cosine! to yield the total

force.

F = non-dimensional force
r

r 27r Trd8 dg[sin g cos $ e cosh Ky!
0 0

V. 28
where x = cos 6 sin

y = cos

The diffracted wave potential, and the resulting force,

has also been computed for this case by Garrison. Both these

forces are displayed in Figure V.7.

To account for the inside pressure the average of the

outside pressures about the base of the hemisphere is corn-

puted:

2' 2'

2Tr 2m cosh KD
0 0



The total force, taking intro account the inside pres-

sure, may be calculated from V.28 and V.29:

V. 30
VT V

 Note the non-dimensional radius is 1.0!

Garrison performed a series of experiments on a sub-

merged hemisphere to check his diffraction theory. Garrison

does not indicate the size of the hemisphere used in his

tests, but he does state that it was supported a distance of

1/16" off the bottom of the wave tank. If the dome radius is

taken to be 4"  a reasonable size in Garrison's wave tank!,

this corresponds to an s of . 0156.

In his tests, Garrison noted "As a consequence of the

1/16 inch clearance left between the model and channel floor

the pressure inside the model did not remain constant but

fluctuated as the waves passed."

In order to correlate his experimental results with the

diffraction theory, Garrison measured the pressures at a

point inside the dome. Under the assumption that the pres-

sure throughout the interior of the dome is the same, the

measured force was corrected by subtracting the effects of

this internal pressure  i.e., eqn. V.30 solved for P !.r

These corrected results are shown in Figure V.8.

Unfortunately, the uncorrected forces and the measured

internal pressures are not available. Garrison has reported,

however, that he has been successful in using the average



pressure about the outside base of a tank to account for

the inside pressure. Using this correction, he was able to

show excellent agreement with experiments. Much of this data

is proprietary.

It should be pointed out, however, that Garrison's

experiment cannot be considered conclusive. Only one wave

gage was used to measure the wave height. The gage was

placed far enough upstream to be unaffected by the scattered

wave, but any standing waves either from the beach or the

tank walls would result in inaccurate wave height measure-

ments. Also, in the case of horizontal forces, the load

cells were connected to the dome with wire line diverted

around a 5" ball bearing pulley. The pulley friction would

adversely affect the force measurements.

Figure V.9 shows the results of Garrison's horizontal

force measurements for two values of R/D  or, in Garrison's

notation, h/a!. The agreement with diffraction theory is

excellent for this case, indicating that the effect of the

gap is indeed small. The gap width for this case was a

nominal 1/16". The dome was actually placed as close to the

channel bottom as physically possible, so that these results

may be considered a "zero-gap" result. Unfortunately, no

data was taken for larger gaps.



10. 1.0
10. 0

Figure V.8

VERTICAL FORCE ON HEMISPHERE WITH ANO WITHOUT BOTTOM PRESSURES.
INCLUDING OATA FROM GARRISON �971 }
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V.4 Ex eriments on Two-Dimensional Sha es

Herbich and Shank  l97l! conducted an extensive series

of experiments on various two-dimensional shapes, including

a cylinder mounted close to the bottom. Their predicted

f orces based entirely on measured data are compared with

fnv r vc @roric r tc 8 hv thA Present theorv in Figures V. lo and



1l6.
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VI. EXPERIMENTAL INVESTIGATION

The theory presented in this thesis is predicated on the

validity of tne assumptions of linearized potential theory,

namely, that viscous effects are negligible, that the flow is

irrotational, that the fluid is incompressiole, and that all

the dependent variables are linearly dependent. on the inci-

dent wave amplitude. In addition to these constraints, it

should also be noted that the method used to derive the

source/sink strength has not been rigorously justified,

neither in this thesis nor in the literature, and may be open

to question. The question arises, therefore, as to what

exactly will be gained from model testing.

On the one hand, we may hope to duplicate the conditions

in the test facility which most closely correspond to the

assumptions of the theory, thus allowing us to judge from the

test results the actual validity of tne theory in the context

of the given assumptions. On the other hand, we might choose

to duplicate to whatever extent possible the actual condi-

tions encountered during an engineering application  i.e., a

full scale tank at sea! to observe the validity of the

assumptions of linear theory themselves.

A scientist would select the first. approach, and would

scale his experiments accordingly. An average engineer might

hope to perform the full scale tests so that he could have

numbers to apply to his next design. A good. engineer would
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take the first approach, while at ine same time examining

tne phenomena excluded from the linear theory in order to

determine the scale effects.

The problem with all this, of course, is that we are

restricted to the budget and the test facilities at hand, and

mus t be satis f ied wi th that.

in this discussion.

First we will turn to the hydrodynamic effects.

VI.l Forces on Db 'ects in a Real Fluid

Tne total force on an object in a moving fluid may be

represented by tne formula

F = ZVC � + � pa C UIVIdU 1

N dt 2 p Q VI.l

where A is the area of the subinerged object projected in the
P

direction of the flow. This is the complete form of

Morison's equation  Morison, et al, 1951!, the first part of

which was introduced in Chapter V  eqn. V.6!.

The major failing of the Norison equation is that it

does not take into account the variability of the coefficients

C and C witn time.

It should be noted, and we will discuss this in more

1111111111111111II ~~I~I~II~IIIIILIII~~ILILIIIIIJIJILIIIIIIIII!�,!3!!�iQIIIII~l! lIIVVV,�!�,,!!! !.~4~~3$/Nllllllllllllllllll
The instruments and the methods of data reduction and

analysis are wrought with dangers and must not be neglected



Some investigators have expressed the mass coefficient.

as a variable quantity. McNown and Wolf write F as

F = pV   � + ] + � pC A U~U~d  kU! dU 1
dt dt 2 D o

VI. 2

where k is the added mass.

This formulation agrees with the classic results of

Stokes on the motion of pendulums in a liquid, namely, that

the presence of viscosit~ and variable acceleration augment

the mass coefficient.

Keulegan and Carpenter �958! have justified Morison's

formula by introducing a new coefficient, k', such that

kU = k'd, dU VZ. 3

from which we get

C = 1+ k'
M

Clearly, the above expression  eqn. VI. 3! is subject to

doubt. Nevertneless, tne Morison equation has been shown by

experience to be useful in the prediction of forces, parti-

cularly in sinusoidal motion.

since their results lead to a justification of linear theory

in relation to the present thesis.

Keulegan and Carpenter attempted to answer the questions

raised in this discussion by examining tne forces on objects

subjected to oscillatory motion.
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Consider the forces on an object in a velocity field

where U t!, tne velocity, is

F force  dependent variable!

circular frequency of motion

R length scale

D velocity
m

p fluid density

v fluid kinematic viscosity

Eeulegan and Carpenter have arranged these parameters in

non-dimensional units to arrive at, the functional equation

U T U R
= f� � � !m m

pUR ' R
m

VI. 4

where

U T/R = "period parameter"
m

flow fxom Using the fact that F is periodic and that

left to right is the reverse of that from right

F 8! = -F� + vr! f, the force may be written

left [i.e.,

U,R � � Al sin 6 = A3 sin 36 + A5 sin 56F

m

VI. 5 + Bl cos 6 + B3 cos 36

U t! = -U cos zt

If R is a characteristic length of the body  radius of a

cylinder!, the important physical parameters of the problem

become
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Norison's equation may be written

VC A C
sin 8 � � ~cos 8~ cos 8o D

U2R U R R
m m

VI. 6

This can be expanded by noting that,

 cos 8  cos 8 = a + al cos 9 + a2 cos 28 +
0

where a = 0
n

n even

a =  -l! >+I/2 8
n n n~-4!

n odd

Then we have

R = Al sin 8 + A3 sin 39 + A5 sin 58 +F

~"m

+ Bl  cos 8! cos 8 + B3 cos 38 + VI. 7

where

I a3
B = B � � B
3 3 al 1

Comparing VI. 6 and VI. 7, the following relationships may

be established for C> and CD.

U T

C<  8! R [Al + A3 + A5 + 2  A3+A5! cos 28

+ 2A5 cos 48 + ...] VI.8.1

wnere the coefficients retain the dependence on U T/R andm

U R ju but are now cons tant in time.
m
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I 2
l k I I

C  8! = -2B1 + [2  B3-B ! + 4  B -B3! cos 28
icos 8 f

VI. 8. 2� 4B5 cos 48 . ...]

If C and C are constant, A and B become zero for all
D n n

n > l. Keulegan and Carpenter used this fact to define the

.. c QnWi%4l3&. -.4:-4. pv~N~,! gM!LB& .x! f 4hga - =-~+ f ~ i~~wM~ 5o b

U TA1
~wa

0 VI. 9. 1

Co
D

VI.9. 2-2B
1

They measured forces on cylinders in a slosh tank,

Fourier analyzed the force output to obtain A ,B from VI.5,
n

and plotted C>,CD and the difference function0 0

R = A3 sin 38 + A5 sin 58 + B3 cos 38 + B5 cos 58 VI.10

In this way Keulegan and Carpenter were able to assess

the variability of C and C with time and determine the

relative importance of Reynold's number and the period

parameter on the coefficients A , Bn' n'

+he tra 1 }]ec n f t znrl C~ s~y'1.+ . ~T!i~ g~P-pip,1 .~~qyi p+i gq�i p

J T/R less than 20. There
m

on Reynolds numoer.

 VI. 8! is negligible  <5%! fc

appears to be little dependen

Working with cylinders ranging in diameter from .5 inches

to 3.0 inches, they were able to conclude that the drag and

inertial coefficients were effectively constant throughout

the phase of the motion as long as U T/R was sufficiently
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Til is phenomenon can be explained by a s imp le phys i ca 1

explanation. The value U T/R indicates the ratio of the

distance traveled by a particle af fluid during a cycle to

the radi us o f the cy linder:

U T/R = mk/R

It should be noted i>ere that the results for a cylinder

 as found by Keulegan and Carpenter! are not entirely suf fi-

cient to determine the relative real fluid effects for the

submerged cylinder with a gap. First of all, no account was

taken in Keulegan and Carpenter's work of the free surface

effect  their models were placed in a deep tank!. This will

be discussed in the next section. Secondly, and most impor-

tantly, the flow through the gaps is more characteristic of

tho Flaw, east a flat @late than flow past a cylinder. In

iy shedding and flow separation

photograpns of flow past flat

carpenter indicate that eddies

onset of motion. This is

this case the occurrence of

is almost inevi tab le. In f a

plates taken by Keulegan anc

form almost immediately upor

where R is the excursion distance of a fluid particle. Thus

if U T/R = 2m, a fluid particle will just traverse the full
m

diameter of the cylinder. Photographs of the flow indicate

that no separation occurs for such small motion, and except

for the effect of surface friction, one would expect poten-

tial theory  wnich predicts a constant C< and C � : 0! to be

valid.



indeed the case for the gap flow as well, as may be observed

from photographs of dye streaks in the area of the cylinder

 Plates 7 through 10! . Plate l0 shows the formation of an

eddy for U T/R = .092.

The drag coefficient for plates is considerably larger

than that for cylinders. C takes on values of greater than

10, for example, for a flat, plate  flow incident! at small

values of U T/R  R for the plate is taken as the plate
m

length! . We may be comforted by the fact, however, that even

at such large values of CD, the total drag force is still

much less than the total inertial force. I f, for example,

 cf. Wiegel, 1964, Chapter ll!

C V TrC R

CDA a 2CDa
D o

we may neglect drag forces entirely. Taking R = 3.0",

a = O.l", C = 2.0 and C = 5.0 we get
M D

TrC R

192CDa

This ratio is probably much larger since the selection

of C = 5.0 seems unrealistically large. The results pre-
D

sented in Appendix G indicate that less than 10% of the total

force comes from drag.



VI. 2 Considerations in tne Anal sis of Test Data

We have stated. that, for U T/R small, we may adopt. the
m

Norison equation for the description of forces on the sub-

merged cylinder. This statement should be qualified for the

case of our cylinder with a gap. Equation VI.6 cannot easily

be applied to the vertical forces since fluid accelerations

vertical f orce is due primarily to the hydrodynamic head

associated with the wave crest passing over the object. It

is difficult to calculate the "drag" in the vertical direc-

tion, although one interpretation might be that it consists

of the force due to the � pU pressure from Bernoulli's
2

equation. In this case the "drag" would be in phase with the

pressure force. At any rate, no attempt, is made here to

associate a mass coefficient with the vertical force.

We have already mentioned that the Norison equation, and

Keulegan and Carpenter's analysis, did not account for the

free surface effect. Specifically, it should be noted that

a component of the inertial force will arise from the scat-

tered waves. These waves are generated when a large amount

of the flow from the incident waves is diverted, generating

outwardly progressing waves. The scattered waves, therefore,

produce pressures in phase with the incident wave velocity

 since this is when the most fluid is diverted!. A modifica-

tion of Morison's formula to take this into account would

appear as



F = C d� + � PA C UIUI + C UdU 1
VI. 11

force, i.e.

2

1

We also wish to non-dimensionalize with respect to the

incident wave amplitude rather than the velocity. Write the

incident wave

iKlx i t
q.  x,t! = Re [a e e

in

>K2x x2 t, >K3x+ a2e e + a3e e " + ... ] VI. 12

where a a, a ... are complex numbers representing

the wave amplitude of the respective Fourier

component of the wave.

K is tne wave number corresponding to the
n

frequency ne, i.e., the solution to

K tanh K D = n v jg
n n

In the following discussion, we shall adopt the notation

used previously, i.e., 9 = ~t. Also, as in the previous

chapters the real part of the expressions will be assumed the

physical quantit.y of interest.

For our purposes, however, it is not necessary to use

the expression in this form. Instead, we will treat C and U

in Norison's equation as complex quantities and take the real

part of the expression to obtain the phase of the inertial



The horizontal and vertical forces, and the moment on

the object may be written respectively,

N -in8

H l nn=1

VI. 13 ~ 1

N
3.n8

V n
tl= 1

VI. 13. 2

N
-in6

n=l
n

VI ~ 13. 3

corning from tne left and the right are both reflected and

transmitted by the cylinder. Vie may write

The reflection coefficient of the beach in the wave tank

proved to reach values of,3.9. Thus it is necessary to

account for waves impinging on the object from both direc-

tions. Figure VI.l snows the situation. The incident waves



N

 x t! = ! a e n eiK x -ino

1 ' ln
VI. 14. 1

N

n2 x t! =   a» e e
n=l

VI. 14. 2

Nq  x, t! = ! a e-kKnx -inB
n=l

3n
VI.l4.3

N

 x t! = ! a e n e
n~l

VI.14.4

Let us define the respective reflection and transmission

coe f f icients as

R = a3 /al  with a2 � � 0! VI 15. 1

T = a4 /al  with a2 = 0!Ln 4n ln 2n
VI. 15. 2

R~ � � a4 /a2  with al � � 0! VI.15.3

T = a3 /a2  with al = 0! VI. 15. 4

These def initions are cons is tent wi th linear theory,

which assumes no harmonic generation by the obstacle or

through shallow water effects  see, e.g., remarks by C. C.

Mei at the M.I.T. Hydrodynamics Laboratory seminar of Septem-

ber 27, 1971! . It sh.ould be pointed out that some non-

linearities are to be expected, particularly for the high

frequency waves wnicn are quite steep. In these cases the

representation of the coefficients above would have to

include cross-reflection and cross-transmission coefficients,



for example,

Lmn 3m~ ln

 with q  x,t! = 0, a . =0, i P n!2 ' ' li

The generation  or amplification! of certain harmonics

was observed in a few cases. This appeared as 2nd harmonic

"noise" superposed on aie lung waves downstream from the

object. No attempt has been made to analyze this harmonic

distortion, but the complete record of wave harmonics is

included in Appendix G for the use of anyone interested in

pursuing that study.

In the context of linear theory, therefore, we take note

of the fact that

VI. 16. 1

VI.16.2
Ln Rn

where R denotes the complex conjugate of R
~n ~n

The proof of VI. 16 is given by Newman �965! following

the metnod of Kreisel �949! .

VI.2.1 Horizontal Forces

Given the incident. waves ql x,t! and F2 x,t! from VI.14,

the velocity potential may be written  in dimensi onal form!:



4 x,y,t! = I  x,y,t! + 4  x,y,t!

cosh K D
n

VI. l7

In Morison's formula, take U to be the horizontal

velocity at the sea bed  the axis of the cylinder! so that

U t! = ~ 4'� 0 t!

VI. ls

f rom which we may identi fy

U
n

The acceleration may similarly be written

dU  t!
N dU

n -in8

dt I dt VI. l9

dU
n

ineU
dt n

Mow Norison's equation may be written

~i
n~l

iKnx -iKnx]
..I1 2n

 a -a ]ln 2n K -inB
K e

cosh K D n
0=1 n

n ln 2n
<o cosh K D

n

-in9
cosh K ye

n
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N -inc~in aR ~ nC K  a -a !e
n.=l cosh K D

n

+ pg K

N z nC K  a -a !~ip KR Mn n 1n 2n -in8
'.o.h K D

n=l n

VI. 20

wnere the drag coefficient has been assumed to be zero, as it

should for

U T
ln 2n

cosh~K D
n

An examination of the test records, Appendix, reveals

that U~is is indeed the case.

Turning to VI.20 we can identify the terms of VI.13 as

~R ~ Mn n 1n 2nnC K  a -a !

n 2 cosh K D
n

from whicn

i2H

C
n

Nn pgvrR nK  a -a !
n ln 2n

VI. 21

This value of C is computed from the reduced test data.

Its value and phase for n = 1 is given for tests 9-17 in

Table VE.5 . Other harmonic values may be found. in the

analysis program output listed in Appendix G.

-in6

D 1 2Dn n ln 2n
cosh K D

n=1 n

N C, K  a, -a, !e '"'
Dn n 1n 2n

n=l
cosn K D

n



VI.2.2 Vertical Forces

The measured values of the vertical force were

normalized with respect to the superposed incident wave

amplitudes over the center of the cylinder. Using the nor-

malization of II.4.5, the normalized force may be written

N

F = g V e
-in6

n 1
n

2V
n

V n xpgR al +a2 !ln 2n

VI. 23

Tnese values are reproduced for the first harmonic in

Table VI.4 for higher harmonics in the computer listings,

Appendix G.

VI.2.3 Noments

The theoretical value of the moment. about the axis of

the cylinder, for linear theory, is zero. This is the case

since all pressures act normal to the cylinder surface and

therefore act along a radius line. All forces are directed

through the axis of the cylinder which therefore cannot

experience a moment.

Figure VI.2 shows the schematic configuration of the

cylinder, its supporting struts and the load cells.

N =  pl+F2!  yl-~! + F4 y2-~! VI. 23

The moment about the point at which the line of action

of the horizontal force intersects tne vertical centerline is
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where 6 = the distance above the bottom through which the

hori,zontal force acts.

M=F y-y!+F y-b,! VI. 24

Notice that the two terms of VI.23 will generally be of

opposite sign but nearly equal magnitude. M is expected to

be relatively smaLl  theoretically zero! so the percentage

error in M for small errors in Fl, F2 and F4 will be large.

Taking the moment about the point  O,y ! yields



In this case we have less sensitivity of M to numerical

errors in the terms on the right.

The moment is normalized with respect. to the incident

wave from the left:

M
n

M
n VI.25

The calculation of these quantities from the test data

will be discussed in Section VI.4.

VI.3 Ex erimental Test Setu

Figure Vl.3 shows a schematic drawing of the test

facilities including the wave paddle, wave probes, dyna-

mometer and cylindrical model. Plate 1 shows the entire test

setup, including the instrumentation rack. Plate 2 shows the

model in position for a test. Plate 3 shows the cylinder out

of water. Plate 4 shows a closeup of the dynamometer, includ-

ing force blocks 3 and 5  in the foreground.!, the load carry-

ing members and the stiffening strip for force block 41  in

the lower right!. Plate 5 is a view of the wavemaker from

above, and plate 6 shows a view of the waterline of the tank

looking upstream from the position of the model.

The equipment for this test is described in a thesis by

Kern �971!. The following will describe the main features

of t>e equipment.
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PLATE I

EXPERIMENTAL SET UP IN CLUDIN G WAV'E
TANK AND INSTRUMENTATION

PLATE 2

SEMI � CIRCULAR CYLINDER SHOWN
I N T E ST POS IT I ON
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PLATE 3

CYLlNDER Sff OW ATTACHED TO
3- COlVIPONENT DYNAMOMETER

P LATE 4

CLOSE � UP OF DYNAMOMETER





VI.3.1 The Wave Tank

The wave tank was designed by Nr. Dean Lewis of the

l'marine Hydrodynamics Laboratory under the direction of Pro-

fessor Jerome !%4ilgram. It is constructed of aluminum and

measures sixteen feet long by one foot wide by two feet deep.

Windows in the sides of the tank aid in flow visualization

 Plate 2!. The side walls of the tank are parallel to

within .Ol inch.

Since the two-foot deptn nade tests on bottom structures

in shallow and intermediate depth waves difficult, a special

aluminum platform was constructed to act as a ground plane

raising the effective bottom of the tank 14 inches. This

platform extends tne entire length of the wave tank  exclud-

ing tne beacn!. It is constructed oy bolting two 1/4"

aluminum plates together with 1/4" plywood sandwiched between

and extending 1/16" beyond tiie side edges  to protect the

anodized surface of the wave tank!. Plexiglass legs support

the structure of this bottom. The legs were milled in order

to insure a level surface.

A 12" x 12" x 3/4" aluminum plate pivoting about the

raised bottom was installed in the tank to act as the wave

paddle.

VI.3.2 The Wave Absorbin Beach

The final 5 feet of the wave tank is filled with tightly

compressed rubberized horse hair mattress material. The



intersection of the beach with the water line has a gradual

slope falling off sharply below the water line. The reflec-

tion coefficient from the beach is highly dependent on the

wave number. Figure VI.4 shows values of the reflection

The coefficient peaks at about . 20 for KD = . 90. The wave-

length corresponding to KD = . 90 of 2.9 feet corresponds

roughly to the distance between the cylinder and the beach,

indicating that resonance might possibly be the source of the

large reflection coefficients for these wavelengths.

Forces on the cylinder are measured by m.:ans of ive

2 lb. Schaevitz inductance type load cells connected by rigid

wires to a. frame onto which are attacned the supporting str.-ts

for tl>e cylinder. The load cell- are attached to a rigid

frame which is clamped to the wave tank during testing. The

configuration of the load cells, the rigid connecting wire

rods, and tne cylinder support frame is such that the hori-

zontal and vertical loads are transmitted separately to load

",.ell- 1, 2, 4  horizontal! and 3, 5  vertical!. Figure VI.1

snows tnis schematically.

ore@ accing along the axis of any load cell causes

th' ferrite core of an inductor to deflect slightly, alteriz.=

tne inciuctance in an LC circuit and thus the frequency in

high frequency oscillator circuit. These high frequency
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signal fluctuations are converted to dc voltages for data

acquisition. The output of the signal conditioning equipment

is a dc voltage linearly proportional to the force acting on

the load cell up to approximately 2 pounds of force.

Tne cylinder, its supporting f rame, and the load cells

comprise a linear mass spring system  neglecting non-linear

hydrodynamic drag! . A horizontal force of 1 lb. at the

center of the cylinder caused a net deflection of the cylin-

der of approximately . 20 incnes. To minimize this deflec-

tion, steel cantilevered. deflection arms were rigged to

stiffen the load cells measuring horizontal forces  load

cells 1, 2 and 4 � see Plates 2, 3 and 4! . Kith the stif-

fened load cells the deflection of the cylinder was reduced

to . 06 inc«es/lb.

Under typical conditions, the cylinder would experience

forces of .3-.5 lbs. The velocity of the cylinder under

these conditions would reach a maximum of �m x . 03!

. 188 inc«/sec. as compared with the maximum particle velocity

of the water of approximately 2.0 inch/sec.

The natural period of vibration of the cylinder out of

water was observed to be . 0575 sec. for horizontal motion.

'"he vertical motion was critically damped.

VJ. 3. 4 The Wave Probes

Four distinct wave components exist. in the far field

 away from the cylinder, the beach or the wavemaker!:



zl x, t!, z2 x,t!, q>  x, t! and rl<  x,t! . To establish the
height and phase of each coraponent four simultaneous measure-

ments at different positions are necessary. To accomplish

this, four capacitance type wave height. sensors were placed

in the tank, two upstream and two downs tream. The sensors

consist of a conducting wire surrounded by plastic insulation

vertically irrmerseo in the 1iquid. The water acts as a

grounded surface, so that a capacitance is set up between it

and tne conducting wire which is connected in an L-C oscil-

lator circuit. The frequency of the L-C circuit comprising

trre wave probe capacitance modulates a knowrr fixed frequency

signal. T'.~e resultant FN signal is demodulated to give a dc

signal output which is linearly proportional to the wave

neight.

Normally the resolution of the wave probes is reduced by

the effects of surface tension. R miniscus layer of water

attacnes itself to the probe as tne waves travel over, thus

distorting the true reading of the probe. To diminish this

effect, each probe is mounted on tne cone of a small radio

loud speaker which is driven by a 60 Hz. signal from a power

supply. The probes are then vibrated vertically with an

amplitude of approximately 1/16", or roughly tne amplitude of

tive miniscus, which will alternately ride up and down the

wave probe 60 times a second. Taking the average of the 60

riz. signal on the output thus yields the correct wave height

measurement.



The wave probes proved shnsit ive to the proximity of

metal'objects. In the tank, the capacitance between the wave

probes and the side of the tank itself proved a bothersome

component, since the output would vary depending on the

relative position of the probe to the windows. Care was

taken to calibrate the probes in their actual test position

so that no calibration errors would result fram a zero-shift.

Another problem was encountered with the oscillator

circuits. In -particular, one circuit became unstable during

the testing and caused severe jumps in the output for one

wave probe. After some unsuccessful attempts to interchange

tne bad oscillator, the experiments were run with the ques-

tionable wave probe in position 3  see Figure VI.2! where it

would have the least effect on the incident wave measurements.

With the exception of this probe, the calibration of the

wave probes proved repeatable to within 5%, which figure may

be taken as the accuracy of the incident wave amplitude

measurements.

VI.3 ' 5 Analo Si nal Processin

If tne calibration coefficient of the i force block is

k. lb./volt, we may write the forces and moment on the
1

cylinder as

VI. 26. lF< � � klvl + k2v2 + k4v4

VI.26 ' 2FV = k3v3 + k5v5

VI. 26. 3= k V  y2-yl! + � yl-6!



where v, represents the voltage output. of -thy ..i , qj,gna$

R11R7  -xR7 a!C1! vl v v4
V [ + +

Rlo l+R7M'Cl'! Rl R2 R4
VI. 27. 1

R8 �-iR8~2 3 5
V [ � + � ]

V 2 2 21+ R8< C2 R3 R5
VI. 27. 2

v4R9 13   ->R9 C3! � l R13QC4!
V VI.27 ' 3

R �+R9u! C ! �+R u! C4!

where the signals are considered to be monochromatically

oscillatory:

For the case of a general periodic signal, each Fourier

component will experience a different gain. From VI.26 we

note that the resistances Rl-R5 must be selected so that

vl v2 v4
R R + R k1 1 + k2 2 k4v4 and

1 2 4

conditioner. In order to utilize these si.gnals, the,signor.s

are filtered and added by means of separate operational

amplifier circuits. These circuits are shown schematically

in Figure VI.5. The inputs are the voltages vl, v2, v3 v4

and v respectively. The outputs correspond  in volts! to

the quantities C F , C F and C [N � F  y -h,!] respectively.
m

C., C and C may be adjusted by altering the gain of the
m

operational amplifier circuits. The outputs of each circuit

may be written



ANALOG PROCESSING CIRCUI S FOR FORCES AND MOMENT



3 5

R R 3 3 5 5
3 5

The RC circuits served as an initial low pass filter for

the signals f rom the instruments. Values of RC were chosen

to attenuate effectively all signals over 120 Hz. For a

typical value of RC = .045, the attenuation at 60 Hz. is

60%, at 120 Hz. 99%. Similar circuits for amplifying the

wave probes were designed to give similar attenuation.

The output of the Op. Amp. was fed into a hybrid EAI 680

analog/IBM 1130 digital computer system at the N.I.T. Mechan-

ical Engineering Computer Facility. An existing program,

ADCNV, was used to sample the signals at a fixed sample rate,

place the sampled  digitized! data on the 1130's disk memory

and punch the stored data on IBM cards for further processing.

All tests were digitized using a sample rate of 250 Hz.

This prevented aliasing of signals up to 125 Hz.  signals

above 120 Hz. are filtered in the Op. Amp. circuits!.

Digital filtering will be discussed in VI.7.

VI ~ 3.6 The Test Section

The cylinders were fabricated from 1/8" thick plexiglass

tubing 4" and 6" in diameter. To connect the cylinder  half-

tube! to the dynamometer frame two 3/8" holes were tapped in

the upper surface and 3/8" rods inserted to serve as struts

 see Plates 3 and 4!. The force on the 3/8" rods is negli-

gible compared to the force on the cylinder  tests showed the
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force on the rods less than 0.5% of the cylinder forces! .

The 3" radius cylinder was used in tests 9-16, 18 and

19. The 2" cylinder w'as used in test 17.

VI.4 Instrument Ca.libration

Calibration was performed by applying a known physical

input to each sensor and recording the output  in volts! of

the appropriate circuit. The voltage readings were taken on

a Hewlett-Packard two-channel recording oscillograph.

Periodic checks were made to insure that the voltages read

by the oscillograph were equal to those reaching the digitiz-

ing system at the Mechanical Engineering Computer.

VI. 4 ' 1 'n1ave Probe Calibration

The wave probes were calibrated by adjusting the output

for the probes in still water to be zero and raising the

probe carriages on metal strips of 1/8" and 1/4" dimensions.

The voltage ca,ange recorded indicated the calibration

coefficient for eacn probe.

All probe signals were amplified in operational ampli-

fier circuits possessing the following transfer function:

R v. �-iR AC!
out in out

R, �+R~ g2C~!
in out

VI. 28

Tables VI.1 and VI.2 summarize the overall calibration

coefficients and positions of the wave probes for the 10 runs.
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If A. is the amplitude of a wave of frequency e at
3.

probe i, f rom VI. 28 we can see that its value may be written

v
A. = � + i R u!C!

i C out
Wi

VI ~ 29

For probes l, 2 and 4

R C = .022
out

and for probe 3

R C = .044.
out

VI.4 ' 2 D namometer Calibration

20,000

19,500

20,000

50, 000Rl
R2
R3
R4
R5

R R7
RS
R9

10

12

13

15,500

100, 000

50,000

50,000

100,000

 see Table VI ~ 3!

C = .22 pfd
1

C = .22 pfd
2

C = .22 pfd
3

C4 = 22 ]Jfd500, 000 0*

150,000 0 *R8 = 200,000 0 for test 9.1

Each force block was calibrated individually by applying

calibration weights of .5 lb. and 1 lb. The gain of the

signal conditioning equipment was adjusted so that load cells

1, 2 and 4  hori zontal load! each yielded  as close as pos-

sible! 1 volt/lb. Load cells 3 and 5 were adjusted to give

5 volts/lb. With the precise coefficients determined for

each load cell, the values of Rl, R2, R3, R4 and R5 were

determined. For all tests, the following values were set:



Rl 1 was ad j us ted f or various tes t runs to mai ntai n an
level. Table VI.3 shows the values of R7acceptable signal

and C for each test run. The values of CV and C wereH V m

volts/3.1.  test 9.1!20.0C

volts/lb.  all other tests!50.0

volts/ft. lb.  all tests!
m

TabIe VI.3

FORCE CALIBRATION DATAHO RI ZONTAI

Run R7 A x 10 ! C~ volts/lb. !un R7 Q >< 10 ! CH volts/lb.!

9.1
9.2
9.3
9.4
9.5
9.6
9.7

10. 2
10. 3
10. 4
10. 5
10. 6
10. 7
10. 8

11. 1
11. 2
11. 3
11. 4

12. 1
12. 2
12. 3
12.4

13.1
13.2
13.3
13.4
13.5

14. 1
14. 2
14 3
l4.4
14.5

200
200
400
400
400
400
400

200
200
400
400
400
400
200

200
200
200
400

200
200
200
400

200
200
200
400
400

200
200
200
200
400

-20. 0
-20.0
� 40 ' 0
-40.0
-40.0
-40,0
-40.0

-20.0
-20 ~ 0
-40. 0
-40 ~ 0.
-40. 0
-40 ~ 0
-20. 0

� 20 ' 0
-20. 0
-20.0
-40.0

-20. 0
-20. 0
-20. 0
-40.0

-20.0
-20.0
-20.D
-40.0
-40.0

� 20.0
-20.0
� 2D.0
-20.0
-40.0

15. 1
15 ' 2
15. 3
15.4

16. 1
16 ~ 2
16. 3
16 ' 4

17. 1
17. 2
17. 3
17. 4
17 5
17. 6

18. 1
18. 2
18. 3
18. 4
18. 5
18. 6
18. 7

19. 1
19.2
19. 3
19. 4
19. 5
19. 6

200
200
200
200

2GD
200
200
400

400
400
400
400
600
600

200
200
200
200
200
200
200

200
200
200
200
200
200

-20. 0
-20. 0
-20. 0
-20.0

-20. 0
-20.0
-20 ' 0
-40.0

-40. 0
-40.0
-40.0
-40.0
-60.0
-60.0

-20. 0
-20.0
-20.0
-20,0
-20.0
-20.0
-20.0

-20.0
-20.0
-20.0
-20.G
-20.0
-20.0



VI. 5 Signal Processin and Anal sis

Once the signals have passed through the analog circuits

tne KAI/IBN digitizing system and finally punched on cards,

the problem remains to determine the non-dimensionalized

forces, moment, reflection coefficients and any other param-

eters of interest. In order to find all the desired informa-

tion the digitized data must be Fourier analyzed to determine

tne amplitudes of the first several Fourier components. The

digitized data contains frequency components up to 120 Hz.

Since the highest frequency water wave we will investigate

has a fundamental frequency of approximately 2 Hz., we may

ignore all frequencies above 10 hz. �th harmonic! or so. In

order to avoid aliasing, the Fourier analysis must use very

small  less than 1/240 sec. to eliminate 120 'lz. aliasing!

time steps for integration, or, as an alternative, the

digital data may be put through a digital low pass filter.

This latter approach was usec.' here  see Appendix F for de-

tails of tice numerical filter!.

After passing through the low pass filter, the data may

be Fourier analyzed using relatively large time steps. The

filtered data is in the form of a matrix, y, with i corre-
1 j

-ponding to a time coordinate. j=0 is arbitrarily taken to

correspond to t=0, j=N to t=T. The channels are numbered

as follows.



Channel

l Output for wave probe l

2 Output for wave probe 2

3 Output for wave probe 3

4 Output for wave probe 4

5 Output for F .  horizontal force!

6 Output for M  moment!

7 Output for FV  vertical force!

Given the filtered data y.. and the fundamental fre-
1!

quency vl = 2z/T, the Fourier components of the signals may

easily be computed:

N

S . = ! y. exp  inmu>BT! VI. 28

Equation VI.7 shows this correction for the wave probe

channels:

S.

A. = '"  l + iR ,n~,D!
in C out

W3.

VI. 29

The Fourier components must still be converted to

physical units. In order to reproduce the original physical

quantities, it is not only necessary to utilize the static

calibration coefficients Cl - C2 etc., but it is also neces-

sary to recognize that the anlog filters and amplifiers con-

tain frequency dependent characteristics. To retrieve the

initial input, therefore, it is necessary to correct for the

effect of the operational amplifier circuits on the signal.



The equivalent expressions for the forces and moment

follow from VI. 27

S

A5 = " � + iR7nM1!
5n C

VI.30.1

s

A6 = C � + iR9nvC3! � + iR13u!C4!
6n

m

VI.30.2

S7
A7 = C {1+ iRneC !

7n C
Vr.30.3

where A. repre'sents the n Fourier component of the i
, th

in

channel output  in correct units! corrected for the analog

filtering.

VI.5.1 D namic Effects

We have seen that the dynamometer system with the cylin-

der attached represents a linear mass/spring system. Figure

VZ.6 shows a typical response curve for an impulsive loading

applied to the cylinder in a horizontal direction. The





B. = A. e in 1-8, + 2<.8.
in in in 1 Jn

VI. 31

B. = the n Fouri-=r component of the i channelth . th

in
signal  in physical units! corrected for

analog filtering and for the dynamic response

where

of the dynamometer system

8 � 1!

= natural circular frequency of motion for the

ni cylinder in the ith channel mode
damping ratio in the ith channel mode

3.

-l i intan [ ~>B ]
3.n

B. represents the Fourier component of the physical
in

quantity of interest. Ne may write, for example,

5

n  x,t! + n  x,t! = Re ! B. e
in

VI.32

where only tne first five harmonics have been included.

VI.5.2 Added Nass Com utations from System Vibrations

As was mentioned in Section VI.5, the natural period of

the system was increased from .G575 sec. for the cylinder out

of water to approximately .2 sec. when the cylinder is

immersed  considering only the horizontal motion!.

Before turning to the computations far the incident and

reflected waves, we will look at the vibrations of the system

from the standpoint of calculating the added mass of the

cylinder.



It is possible to calculate the added mass based on

these observations. The following discussion will treat m as

the effective mass of the cylinder and k as the effective

spring constant of the cylinder. Thus,

T =2m ~m
n

VI. 33

For the cylinder out of water,

T = .0575 sec.
n

k = 200 lb./ft.  measured!

there fore

m = .Ol68 lb.

Continuing with the discussion of the added mass, we may

write for the cylinder immersed in water

VI.34

where m' = displaced plus added mass of cylinder due to

motion of the water and wave generation.

Re have used VI.33 under the assumption that the damping

ratio is zero. Figure VI.5 shows a typical curve of the free

vibrations of the cylinder. This case is typical of the

vibrations, and as can be seen, is quite lightly damped. The

largest damping ratio observed during the tests was .0285.

We may continue this discussion based on an undamped oscilla-

tor, keeping in mind only the fact that the damping must be

included for forced motion near resonance.



From V1.34

m' = k T /2m! 2 � m
n

VI.35

In order to compute m' it is necessary to compute the

gap flow problem for the case of an oscillating cylinder.

This problem is related to the wave force problem via the

Haskind' s relations. For the solution to the radiation

problem, see Appendix E.

The trend of the data may be seen from the following

tabulations by gap width:

D = 6.0 incnes

s  inches! m'  mess. ! m~ cpm . !

D = 5.0 inches

c  inches! m'  mess. ! m~ com . !

1/8 . 275 . 168

1/4 . 240

3/8

1/2 . 152 . 152

1/8

1/4

3/8

1/2

.287

.244

. 218

~ 172

. 162.228

Bs a rMrk..ov P>e wamruiter unarm, the dgmoipa coef-

ficients computed for the oscillating. cylinder were used to

calculate C for the same f requency using equation E. 18. C

was also calculated by the wave force method of program MAIN

 Appendix F! and the two values compared. In all cases

checked these values agreed to within 5%.

The calculations of the added mass correlate with the

trend of the data, but appear to be lower by approximately

25%. This fact could easily be attributed to an error in the

measurement of the spring constant k  the value of k was

arrived at by measuring a .06" deflection with a ruler!!.
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VI.5.3 Force Com utations

V  xl. t! = el xl t! + R3  xl t!

5
-in dt

ln

5
3 Kax]

ln
n=l

j. K g x j, 3. n� t
+ a e ~ je

3n

where <u = 2m/T

This yields

16nxl -j ~~gx]
ln ln a2 e VI. 37. 1

Similar equations for eacn position yield

il<~x2 � iIi~x2
B2n aine + a3 e VI. 37. 2

3.mDX3 ~ � 1K~x33 = a4 e + a2ne VI.37.3

j E~x4 � 3 K~xg
4 4

Q VI. 37. 4

Solving VI. 37 for al, a2, a3 and a4 by straight-4n

forward. algebraic means yields the following solution:

1 e
 - >Knx2 >Knxl!e

a
ln 2 sin Ka~l

VI.38.1

Given B. , i = 1-4, we may now calculate the four wave
in'

functions a. , i = 1 4. To do this, write the wave amplitude
in

for each of the four positions as the spy of the respective

components  ref erring to equations VI. 14!:



, B iKnxl B ~Knx2!
a = 2n

3n
ln

2 sin Kn~i
VI.38.2

� l,Knx4 -1Kgx3!
i B e � B e

a 2n 2 sin K 2
VI.38.3

j Knx 3 3.Knx 4 !i  B4 e � B3 e
a 4n 2 sin K�

VI.3S.4

where Al = x2 xl

x4 � x3

The normalized forces may now be determined directly.

From VI.21, write

i2B5
C

5n

Mn Pg1IR nKn al2 a2n
VI. 39

From VI.22, obtain

2B
7n

V
n

VI.40

And from VI.25,

6n
2B

n nanna
1n

VI. 41

VI. 5. 4 Re flection and Transmission Coe f f icients

Noting the relationships for the reflection and trans-

mission coefficients, eqns. VI.15 and VI.16, we may write



a =R a +T a3n Ln ln Rn 2n

a4 � TI . al + RLn a2n

Setting T = TL = TR and R = RL RR 'n Ln Rn n Ln Rn'

VI. 42. 1a = R a + z a
3n n ln n 2n

a4n = Tnaln + Rna2n VI. 42. 2

understood that the equations apply to each harmonic.

Let the reflection coefficient be

R=r+ sr

and the transmission coefficient

tl + it!

where rl z2, t and t are real quantities.

Also, let

a ~ = p. + iq
1 I

where p. and q. are real numbers.
3.

quations VI.42 may then be written

P3 1Pl 2ql 1 2 2 2

3 lql + r2.1+ tlq2 + t2P2

P4 = 1P2 + '2q2 ' lPl � 2ql

4 1 2 2 2 lql 2 1

In the following we will drop the R subscript, it being



The unknowns may easily be solved algebraically.

rl = Dl/Det

D2/De t

= D /Det
3

D4/Det

VI. 43. 1

VI. 43. 2

VI.43.3

VI.43.4

where

ql P2 q2

ql Pl q2 P2

2 q2 Pl ql

q2 2 q1 1

Det

D. = Det with i column replaced by
. th.

3.

 p3 q3. p4. q4!

This operation must be carried out for each of the five

harmonics in order to obtain the respective reflection and

transmission coefficients.

VI.6 Presentation of Results

A total of 19 tests were conducted, each test consisting

of several runs corresponding to different wave periods. The

results of the first eight tests are not reported here since

the calibration coefficients of the wave probes were in doubt

and the results meaningless. These early tests served mainly

the purpose of working out experimental techniques.
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The numbering sequence is r. tained here, however, since

it is more convenient in referring to the computer output

which is numbered by the c "iginal sequence.

Table II.4 summarizes the parameters for tests 9-17.

All these tests were run with the cylinder a measured dis-

tance above the bottom. Runs were made with gap widths of

1/8", 1/4" 3/8" and 1/2". The results for the first harmonic

quantities are summarized in Table VI.5. Notice that all

tests, with the exception of 17, were run using the 3" radius

cylinders

Figures VI. through VI. show these results graphicallv.

Figures VI, and VI. show the phases of the horizontal and

vertical forces for a number of cases. The theoretical values

are plotted for each case.

After conducting these tests it became apparent that the

experimental scatter made it difficult to assess the exact

effect of the gap as presented by the theory. The difference

in vertical forces was negligible for the gap widths tested

and, while the general trend of the data appears correct, the

mass coefficient could not really be resolved close enough

to correlate with the logarithmic dependence or v predicted.

To obtain a better verification of the variation of C<

with q, test 1B was conducted in an attempt to simulate he

zero-gap case. Plates 11 and 12 show the cylinder setup

for this test. In order to block the flow through



the gaps as much as possible, a plate in tne raised

bottom of the tank was removed and the cylinder set in the

slot. Plate 12 shows a closeup of this area with dye

injected during the passing of a wave. ',Phile the flow is not

completely blocked, a comparison with Plates 7, 8 and 9

shows a marked reduction.

The results for test 18 are shown in Figure VI. The

mass coefficient has been significantly increased over the

finite c cases.

Computer Out ut of Results

Program DATA reduced and analyzed the data for each

test run. Appendices G and H of this thesis present a com-

plete record of the program output for tests 9 through 19.

The output in Appendix G shows the Fourier coefficients

of the filtered data, the calculated wave Uarameters, the

non-dimensional forces, and parameters concerning the test.

Calibration data has been presented elsewhere in this

chapter.  Tables Vl.

The first part of this output, the complex Fourier co-

efficients of the data, corresponds to the values .'2 dis-i n

cussed in tne last chapter. The physical quantity corres-

ponding to the output of channel m mav be written as

 t! = Re ! B e = ! [c cos n~t + d sin et]
m mn mn mn

n=l n=l

VI.44
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The value of c and d are listed for each channel
mn mn

under the columns marked "cos" and "sin" respectively. The

values for the first 5 harmonics are given.

The next section of output. lists wave parameters' These

may be defined as follows:

FREQUENCY = nv, n being the harmonic number.

WAVE LENGTH = wave length in feet.

WAVE F14! ~ LEFT:

AMP = magnitude of a. with units of inches.
in

PHASE = phase of al in degrees.
ln

WAVE FM. RIGHT:

AMP = magnitude of a2 with units of inches.
2n

PHASE = phase of a2 in degrees.
2n

REF . COEF:

AMP = magnitude of R . This is a dimensionless quantity,
the designation " in.!" in the program is an error.

PHASE = phase of R in degrees.
n

TRANS COEF:

AMP = magnitude of t , also a dimensionless quantityn'

regardless of the program specification.

PHASE = phase of 'T in degrees.
n

QRT = value o f ~ R ! + ~ ~ ~, theoretically equal to l. 0
n n

for conservation of energy.

The output marked "NON-DIMENSIONAL FORCES" gives the

following results for each harmonic:

FREQUENCY =  nz! D/g, non-dimensional depth.



= magnitude of C  eqn. VI.39!
mn

phase of C in degrees.
mn

FH

FV = magnitude of V  eqn. VI. 40!

AV = phase of V in degrees

FM = magnitude of H  eqn. VI.41!'n

phase of M in degrees
n

KD = wave number times depth

KA = wave number times magnitude of. a
ln

FACTOR= coefficient used to compute non-dimensional forces.

This is of no interest, here.

The test parameters listed at the bottom of the output

include the depth in feet, the ratio R/D, the gap width given

in feet, the cylinder radius in feet and the wave period in

seconds. The three factors labeled "ADF", "ADV" and "ACTOR"

are of no interest.

Appendix H lists the time history of the signals over

one period for each channel. These are the values after

passing through the high pass filter  Appendix D! but before

Tests 18 and 19 were conducted without the use of the

digitizer. For these runs, wave amplitudes and phases were

visually picked directly off the oscillograph records. The

analysis is tnerefore made for only the first harmonic. An

error in the input of a calibration coefficient caused the

values of FH printed fox these tests to be off b~ a factor of

1/2. To obtain the correct values of FH, multiply those giv~

for tests 18 and 19 by two.



any Fourier analysis. A plot of these points w'ould duplicate

the signal received from the signal conditioning equipment.

Tests 11, 12 and 13 are not available in this form.
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VI.7 Real Flow Throu h Ga s

Tne inner solution for floe through the gaps indicates

that tne velocity reaches infinity at the edges. Real low

cannot attain infinite velocity, so it can be expected that

this theory may be invalid in the regions adjacent to the

cylinder edges.

In order to examine the flow, photographs of dye motion

about the edges during the passage of various waves were

taken. ?lates 7-10 show this flow for the values of U T/R
m

 the l eulegan-Carpenter parameter!, KA and T indicated {A in

the plates indicates the amplitudes of the incident wave

from the left!.

As indicated in these plates, the floe. through tne gaps

does not co~form to the inner flow sketched in Figure III.2.

The streamlines separate from the cylinder and form a jet,

ending with a single eddy at some distance rom the edge.

The strength of the jet is dependent on the relative wave

height, or, more precisely, on the Keulegan-Carpenter

parameter.

The effect of this diversion =rom the assumed floi; may

be approximated by conside"in- the free streamline lc;;

through an orifice  c . Nilne-Thompson, Sec. 12.32!. Quali-

tativelv, it may be expected that tne e"feet of the gap will

be less in tne case of real fluid flow than in the idealized

model, since the inertial pressure drop across the gap will



be less in the separated flow than in the attached case. On

the other hand, the drag component of the force can be

expea ed:5c be-. hip'ier =n. trie-: reai.:" 410' CTt=s z~:v~< wuui'z".

tend to shift the phase angle of the horizontal force, as

indeed appears to be the case from Figures VI. 1G and VI. ll.
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PLATE 7

T=,90, KA=. l58, U T/R = l.60
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PLATE 8

T= I.30, KA = .045, U~ T/R = I. 20
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PLATE 9

T= I, I 5, KA =.042, Um T/R =, 96
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PL ATE I I

CY L I N DER I N PQS IT l 0 N FOR

ZERO � GAP TESTS
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PLATE I 2

FLOW THROUGH GAP DURING

' ZERO � GAP TESTS



VI I . COi4CLUSIOiVS

The solution derived herein provides an adequate theory

for predicting the forces on a submerged cylinder, as is

apparent. from the correlation of the theory with experiment.

In particular, -and of significant engineering importance, is

the conclusion that the inside region experiences a constant

pulsating pressure equal to the average of the pressures

acting around the base.

The applicability of this conclusion to the practical

problem of forces on a three-dimensional object has not been

proven, but intuitive reasoning indicates that it is plaus-

ible. If the pressure inside of a "dome", for example, did

not exhibit a first order variation, the pressure drop across

would be first order. For very small gaps this seems un-

realistic.

The effect on the horizontal force, for the cylinder, is

the same order as the gap flow. This has less significant

implications with regard to the three � dimensional case.

Since in practice flow will be restricted either by design or

by nature  through erosion!, the effect of flow through the

bottom may be less pronounced. It might be noted, however,

that a poorly designed experiment on three-dimensional models

could give erroneous horizontal force measurements. In par-

ticular, if a model is suspended above the bottom in order to



provide a clearance for vertical motion, horizontal forces

will be less than in a more realistic setup with no clearance.

The error can be expected, on the basis of this thesis, to be

of tne order l/inc.

With regards to both the vertical and the horizontal

forces, the values computed on the basis of no gap appear to

represent a conservative upper limit on the actual forces

A more thorough inve s tiga tion of the th ree-dimens iona l

problem has not been carried out in this thesis. The same

method could in principle be applied, however. To do this,

eh~ ~et-ential about a dome would have to be broken into its
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APPEND

AN ALTERNATE KPTCHXNG SCIiENE

The semi-intuitive ma ~ing procedure used in Chapter XXX

may be shown to be equiva.ent to a more formal expansion

procedure. To show this, we will consider the problem of a

single slit in a vertical wall. The slit is a distance h

below the free surface, and waves are incident from the left

 see Figure A.l!. This problem has been solved by Tuck

 l969!, and will be examined here only to illustrate the

equivalence of two alternate matching schemes.

The v rtical wall extends to an inf inite depth. The

transmission coefficient depends on the slit:ridth {d! and

the depth of submergence  h! . ',~e v' ll thus assume that the

perturbation parameter may be written as

A.l
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and that the transmission coefficient, z, goes asymptoti-

cally to zero for small c.

iHow we may represent the velocit; potent'als on eit;>er

side of the barrier as follows:

 x,y,~! = $  x,y! + x {c! $  x,y!

+ z  s! g  x y! +

left of wall:
A.2.1

right o wall: $  x,y,E! = $  x y! + Ql c! +1 xgy!r r ,r
0

+ n  s! y  x,y! +
A.2.2

 x,y! =  x.y! /h

x and y are dimensional variables

where

n+1

n

1im

pmO

lim m = 0

a~0
1

The boundary value problem satisfied by j and $ is as
r

follows

 x y! = 0k,r A.3. l

!~k,~r
 O.y! = 0 y > � 1+z; y < -1 E A 3 2

�x

 x,O! = 0
<'h k,r

i
A-3.3

-Ky -iKx iKx
 x.y! � ie e

A.3.4

~Z -iKx
 x v! = e A.3. 5

Equations A.3 are valid to any orde"..«y virtue of the
r

linearity c f t-. s eq. ations, all o f t,e::;-.ctions ]. and
J. i
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N, satisfy A.3. We may simplify A.3.2 byi = 0, 1,

writing

34' � y! = 0 y P � 1,

and noting that the approximation is valid to 0  c! .

rThe potentials ] and 4 are assumed valid only at dis-

tances far removed from the slit. Using dimensionless nota-

tion  Chapter j:I!, and assuming linear theory, the asymptotic

R rform of ] or x ~ -~ and the complete ! may be written
0 0

immediately:

 x,y! = 2ie cos kxky
0

A.4

 x,y! = 0 A.5

 x,y! = + A fknr+H r!j9,r
A.6

where r  x,y+1!

These are the solutions for a vertical barrier with no

gap and no "breaking" at the point �, 0! . The introduction

o f a smal 1 gap at a f inite depth introduces a per turb ation as

indicated by A. 2. The representations A. 2 are called the

"outer expansion" of the flow, and they represent the per-

turbed flow far from the slit  further than some radius h!.

The perturbation potentials !] 
 etc., may thus be

represented by multipole expansions at �, -1!. t~e will

assume, and matching will show, that the correct perturba-

tion is a simple source  or sink! placed at �, -1!. This

wi'l be shown to be valid to 0 c !.

tie may thus write, tentatively,



r = x +  y+1!

H r! is a regular function of F.

We take the source strength to be +A on tne left and
n

-A on the right, as must be the case from continuity. The
n

value of A can only be found by matching the outer solution
n

to an inner solution  Chapter III! . Tne f unction ~nr + H  r!

is obviously simply the Green's function for a simple source

at �,-1!, thus H r! is known. The region of non-uniformity

is determined by a radius 5 within which the perturbation
n

A ~nr is no longer small. This implies
n n

= 0 e '~ n!
n

A.7

Inner Problem

We may proceed as in Cnapter III to solve the inner

problem by stretcning coordinates.

X/E A.8.1

J. 1

E
A.8.2

We may represent the inner flow as an asymptotic

expansion

V xlyiE! = C + 51 E! 0]  xfy! + ='2 E! ~2  xty! + . ~ . A. 9

where the 8 ' s play the same role as the ' s in A. 3. As is

usually the case,;- = ~ for this problem, but they will be
n n

designated separately since they are not. necessarily eoual.

Since the boundary conditions remain linear ano. independent

of the order, we may write
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 x,y! = .q R cosh z + q
n n e n

wnere z = x + iy

We have made use of the derivation of the flow through a

slit in an infinite wall from Chapter III.

M~atchin

We shall find the values of A , Q , C and q through then' n' n

application of Van Dyke's matching principle  Van Dyke, 1964,

p. 89! . Specifically, we will use the "asymptotic matching

principle":

The m-term inkier expansion of  the n-term outer

expansion! = the n-term inner expansion of  the

m-term outer expansion!.

Tnis matching is accomplished by the following procedure:

1. Cnoose m=n or n+l.

2. Write first n terms of the outer expansion  A.2! in
terms of the inner variables  x,y!.

3. Expand this for small c, include first m terms of
expansion.

4. Write first m terms of the inner expansion  A.9! in
terms of the outer variables  s,y!.

5. .xpand this for small s, include first n terms.

6. Convert bath expansions  from steps 3 and 5! into the
same coordinates.

7. Equate the two expansions and determine the unknowns.

resow, cnoose m=2, n=l, to get:



1. 2 term outer expansion;

2ie cosi.x + «1 -=! Al [«.nr+1i',r! ]Kv

r  c! Al [ nr+H r! ]

2. Rewritten in inner variables

K  ye-h!2ie cosI<xc + ml  c! Al ['nor + ii Er! ]

-a  c! A [ "ner + FI cr! ]
1 1

3. Expand for small e  keeping x,y fixed!

-Eh
2ie + mlAlkn~

,r -c A Znc

4. 1 term inner expansion

~ x,y! = C

5. Rewrite in outer coordinates:

V x,y! = C

6. Lxpand for small c,  x,y! fixed:

y x y! = C

In order to obtain a solution, we must set «I =-!

0 �/ nc! . Setting

 =-! = 1/ nc,

� kh
2ie + A = C

1
to C:

-Al

we obtain, by equating tne expressions obtained at step 3



Thus, we obtain:

-kh
C = -'. = ie

To find higher order terms, repeat this procedure for,

say, m=3, n=2, etc. ad nauseum We will perform one more

iteration here:

l. 3 term outer expansion:

-kh

2ie coskx � < [knr+H  r! ] + u A [Rnr+1.'  r! ]
Rnc

-kh

[<nr+I  r! ] � 0'2A2 [R,nr+H  r! ]
Rnc

-kh
P.. -k  yE � h! ie2ie coskxe � [2,n rc!+H  Er! ]

inc

-kh

+H re  x2A2 ~nr +H er! ]
inc

-kh ie
kh

ie � < [ R,nr+H �! ] + 82A2 En' + 0   c!
inE

A. 12.1

-kh

ie + < [ knr+H �! ] � Q2A2JLnc A. 12. 2

4. 2 term inner expansion:

= c + 81  Q1R cosh iz + Z !
1 e

C + 5 [Q1R cosh  iz/c! + ql!
1 e

2. Rewrite in inner variables:

3. Expand for small c, x,y fixed!

5. Rewrite in outer variables:

2A2 [ Rnr +E'   E2:! ]



6. Expand for smalL ~  z fixed}

 "+" for x > 0, " � " for x < Q}

7. 3 term outer expansion  of 2 term inner!

C + 8LQL2nE + BLQLPn2r +

If we now rewrite this in inner coordinates, we get:

C + 8 Q 2n2r + 8 q

First, comparing the 2nr terms, which must. match,

we find:
-kh

1 1 Rnc

to match with A. , we must set m2 � �  L/2nc! ' to obtain

 setting Ql � � -Al!=

l2n2 + ql 1 �! � A2

+AL2n2 + ql = ALH�! + A2

from which we deduce

q = 0

 .n2 � ri �! ]
2 1

A.14

Combinina tne results so far with A. 2 and A. 6, we can

write the outer expansion as

2ie coskx � ie [knr+H  r! ] � + . ' +
-ky -kh ~ 1 n2 � H �!

2.na �ne}

A.15.l

-kh.from which we deduce that 3L � � 1/2nc and Qj = Al ie
The next terms to match are of 0 L/Rnc! . Zn order for A.12
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ie [2nr+H  r> 1 + <, +r . -kh 1 Rn2-H�!
ink  inc! 2 A.15. 2

Further terms in the above expansions may be added with

increasing tedium.

Com arison with "Semi-Intuitive" Natchin

It is much easier to find the solution to this problem
directly by setting

 x,y! = 2ie coskx + A  c! [Knr+H  r! ]+ky

 x,y! = -A  c! [knr+H  r! ]

A.16.1

A.16.2

for the outer solution, and

� 1g xy~! = P + Q c! Re cosh  iz/c! A. 17

for the inner solution. These representations are of. course

valid to whatever order the particular form of the solutions

is valid, since the same expressions could be derived by
� 1factoring the [~nr+H  r! ] and the [Re cosh  iz! ] expressions

from A.2 and A.9 respectively. In particular, we see
immediately that

The above process ca; ~f course be extended indefinitely,
yielding in tl>is case an asymptotic series in  l/Rn~! carriedn

to an infinite number of terms. Actually, at some point the

series should be truncated since the accuracy gained Ly

adding a term of �/in~! will, for finite values of c, beN

less than that lost by ignoring 0   E:! terms . This happens
when N = -inc/kn  inc   . Notice that N becomes inf inite as

0.



i4

A E! = ! Q A
n h

n=l

A. 18

N ' -'n~n
n= 1

A. 19

P=C+2 3q
n=1

A.20and

-kh
2ie + A[inr + H�!] = P + Akn�r/~! A.21.1

-A[knr + H�! ] = P � A" n�r/c! A.21.2

which yields

� kh
P = ie A. 22

-kh
ie

A. 23
Rn2 � H �! � inc

Expanding A E:! in powers of �/<nz! yields

-kh
ie

~n E.

-kh
-ie n2-H �!

~noA c!
1

~n2-H�!
~no

A.24

Comparing A. 15 and. A. 16 -' ng A. 24 shows that both

matchin- procedures do indeed. g ield the same result

To snow the equivalence of the two forris of matching,

we need only set. the outer limit of the inner solution  A.17!

equal to the inner limit of the outer solution  A.16! to

obtain  setting A = -g for continuity!



APPENDIX 8

GREE>i'S FUNCTION

The Green's function is the potential of a source at

  ,rl! which satisfies the free surface condition, the bottom

boundary condition, and the radiation conditions at x = + ~.

If this function is G x,y~ ,q!, when the time dependence has

been superseded as in Chapter II, then

V G  x,y !  ,q! = � 2' 5  x- ! b  y-q!

 v � B/By! G x,D] ~,q! = 0

B. l

J3 ~ 2

B.3

+iKx
G = e� B.4

where v = z /g

where r' =  x- ! ' +  y-0! '

r' ' =  x- ! ' +  y+V-2D! '

He then solves for fi by writing

 x y ! grl! = ff  Frl k! sinh ky
0

+ f  E,q,k! cosh k  D � y! J cos kx dk

The equations have been written in dimensional form.

These equations nave been solved by numerous authors. Thorne

 l953! writes G x,y ~  ,rl! in the form

G x,y~  ,q! = kn r/r'! + g  x,yI E,q! + ig  x,y~  ,q!,
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and selecting fl and f2 so that the boundary conditions

2 is selected so the radiationB.2 and B.3 are satisfied.

conditions are satisfied.

Wehausen and Laitone solve the same problem using the

complex potential function, and Mei �969! finds the Green's

function by Fourier transform techniques. Only the results

will be presented here.

As given by Thorne, and with a substitution indicated

by Wehausen*, the functions $ and ! may be written

 x,y~ ,,q! = � 2anD

fK+ e coshk  D+q! coshk D+ ! cosk x- !
k sxnh kD - v cosh kD

0

K2 g2
 x, y ~  , rl! � ~ ~ coshK  D+z! coshK  D+y! cosK  x-~!K  K~D-g~D+v!

The asymptotic form may be written

The value of the integral for 1 is computed by taking

 numerically! the limit

"Wehausen introduces the identity

-KD
e sinh KD K � u

uD + sinh KD K D - v D +

lim G x,y I  , ~! � K  K D > D+>! coshK  D+y! coshK  D+<! eiKlx-41-i~/2
~+OD
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for each s e t o f values  z, y   4, rl ! on the cylinder .
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APPENDIX C

-l.
ASYNPTOTIC LINITS OF cosh iZ

The solution to the inner problem was obtained in

Chapter III by performing a conformal mapping:

Z = -i cosh III.21

where Z =  x+1!/s + iy/c

C.l

and, for the right side of the gap,

ie ~+in!
lim Z

2

a<q <sr

C.2

Thus, we may take the mapping in the two limits to be:

kn2iZ  left side!

 right side!Rn2iZ

which yields the complex velocity potential from equation

III.22,

W Z! ~ + Ukn2iZ + C,

which yields the asymptotic form of the velocity potential

when only tne real part is taken, i.e.,

This mapping is illustrated in Figures III.3,4. The

asymptotic limits may be taken, for the left side of the gap,



y<X,V! = + Van2IZ~ + C.

This "outer limit" has been utilized in Chapter ZV for

the matching.
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APPENDIX D

NUMERICAL FILTERING 0F DATA

H g! = l.0 -4!   4!   QJ
c c

icosi > u!H <Q! = 0.0

In this manner, if X  z! is the Fourier transform of

x t!  cf. Davenport and Root!
+m

X v! x t! e dt
~2m

D. 1

The Fourier transform of the output, y t!, will be

D.2Y  e! = H   o! X  u!!,

so that y t! will be x t! with frequencies of i <a j

removed.

y t! may be found by taking the inverse Fourier trans-

form of D.2

y t! = H z! X o>! e d~
~2~

D.3

Noting that

+Co

H u>! = h t! e dt,
~i>

write

If we desire to low pass filter a time function, x t!,

we must pass it through a linear system with the following

transfer function



y t! = dZ''i t'! dtax v! e
2'

D.4

Equation D.l is the familiar convolution integral

 cf. BLackman and Tuckey, p. 72!. Equation D.4 is helpful

in our case since we may find the filtered function, y t!,

do this, we must determine h  t!:

+ao

h t! = H  ui! e dg
~m

1 i>td e dM

~2' -<c

D.5

Equation D.4 may now be written

1
+ca sin z t'

y  t! = � x t-t'!
CD.6

infinite Since we cannot obtain a wave record

length, the above integral must be approxim

a finite time period. The actual records w

several  at least 5! wave cycles. Since we

terested in the filtered values over one pe

culate y t! for t.'s lying within a length o

representing no more than 1/5 of the total

'd by one over

taken over

"e only in-

>d, we will c

Che record

=ord. If the

~4 ~%iMAA r,hi'l.'m~gZ ~ @ >4~ i ntearqt j,og numerically . To
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B «OBu«u «su>x
I I I I ~ I I ~ IIIII

,"ration over a finite time, In order that the i>

sin ~ t' dt'
0

y  !D.7

he limits of the

P/2 � N, where % is a

hash that might

would not require values of x t! beyor

record length, we must select = T
0 s

buffer to protect us from picking up

total sample time is T  sec.!, the punched. data will con-
s

sist of 250 T points for each of seven channels of informa-
S

tion  for a sample rate of 250 Hz.!. The point t � T/2 may

arbitrarily be selected to correspond to the kth point of

the data, R = 125 T , so that t = T/2 lies in the middle of

the recorded data. The points t=Q and t=T will thus lie an

equal number of points to each side of the midpoint. The

situation is shown graphically in Figure D.l.



Now, selecting the i a points so that

where y.  t, ! is the signal for channel i
J

at time t = t.
j

t. =  j-l! ht
j

T/N

N = number of points to be

calculated for one cycle

we may writeand letting t. = t � t' in

t +Ti o sin u!  t,-t. !

y t !

o

dt.
j

This may be written in numerical form

i+N

Y. = h,v ! x,Ak
j=i-N

0

sin <u  t.-t. !
1 c j i

wnere Ak

sin kv
c

N = l25 T
0 0

exist at the ends of the record. N is typically selected

to equal 50.
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Program DATA reads the cards punched on the IBM 1130

and applies the filter D.S to all channels prior to Fourier

analysis.
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APPENDIX E

RADIATION FROM r~iV OS COLLATING CYLINDER

...I9 62@ . Tne '-< eeoc i t.-.'.-g>'bfeh~K H%, ~hO~ "+id& =-~<4M:.� MC

damping coefficients, are readily computed by the same pre

gram used to compute the wave forces with minor alterat,.or

These computations serve two purposes. First, a comparisc

of the computed added mass coefficients with those measure

provides arin the cylinder vibration studies  Table

alternate means of comparing the linear theory with experi

ment. Secondly, by computing the wave force coefficint or

via direct computation, and once via the Haskind relation~

using computed damping coefficients, the reliability of tl.
computer program may be checked since the Haskind relatior
holds only between the exact linear damping coefficient ar

the exact wave force coefficient.

The formulation of this problem follows closely that

the wave force problem. Ne will again denote the potenti<

outside the cylinder by $ r!, that inside by $ r!, and th~

"inner" gap potential by g r!.

The cylinder will be assumed oscillating in the hori-

zontal plane with a velocity

The solution for an .scillating cylinder in calm water

is of interest because the damping coefficient may be directly

related to the magnitude  but not the phase! of the force

coefficient by means of the Haskind relations  see Newman,
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U t! = U cos ~t ~
0

E.l

The fluid is assumed incomoressible and the motion

irrotational.

E.l The Outside Re ion

! r! then satisfies the following conditions:

'7 !  r! = 0 z.2.l

R x, D! � � $ x, D! = 0 E. 2.2

~xI > L xI0! = 0
Y

E.2.3

 x,y ! = U cos 0n s' s
E.2.4

where x~ + y~ = l
S S

0= tan  x /y !

Let

4  ! = 4   ! + Q ~�L r! E.3.1

gl r! = kn r /r ! + H r!

The conditions on gl and 42 are the same with the

E.3. 2

Zn addition, $ x,y! satisfies the radiation condition at

ix/

We will again write g  r! as a f irst order term plus a

source and a sink perturbation term to account for the gap.

We will introduce the same non-uniformities as before and

will solve by matching the solutions near each gap.



exception of the boundary condition on the cylinder.

 x ! = U cos 0
ln

E.4.1

 :.,y! = 0 E. 4,2

We can see immediately that H  r! is identical to H  r!

for the wave force calculation.in eqn.

The first order outside potential, $1, may be found

numerically by the same integral equation as was g  r! forso

the wave force, namely

+ � G x ,y I ,q! >  x y !dk

<I>
1 3G U
m 1 an

dk + � G cos 8 d2,
Tr

5

3$,
Bn

U cos e .6

in the program, i.e., by using the oscillating velocities

rather than the incident wave velocities.

Assuming tnt s computg gaol:- ilasDB li .= 1= ec. !u - we=.i a ~--

wri te as be f ore:

where the integrations are taken over the cylinder's surface

as before. Z.5 may be solved numerically by the same program

used to compute ]  r! by simply making the substitution
so



H�,0! = H

H  -1, 0!

E.7.3

7

Z.2 The Inside Re ion

The conditions to be satisfied by $ r! are simplified

by the absence of a free surface.

V 4 r! = 0

 x,o! = 0
Y

E.S. 2

y  x ,y ! = V cos en s' s
E.8.3

The potential which satisfies these conditions is the

same as that for a fixed cylinder with an added term to

satisfy E.8.2:

$ r! = B c! + Ux + Q c! kn r /r ! E.9

E.3 The Inner Solution

The inner solution, like the inside solution, remains

the same as before with the addition of a term to account for

the motion of the cylinder wall. Thus we may write



 X, Y ! = C + Q 'r Re  cosh  iZL! ! + Ux
j L' L L

E.l0.1

 X,Y ! = C + Q c! Re  cosh  iZR! ! + Ux
R R'R R

E.10.2

where the inner variables are again defined as

ing will be carried out in that system.

E

The outer limits of the inner solutions may be written

as follows:

lim $  XL,YL! = CL + Q g! gn�rL/c!
E+0

XL,YL fixed
x~o

z. 11. 1

lim $R XR.YR! = CR + Q   ! n�rR/ !
E~Q

XR,YR fixed
x! 0

E. ll. 2

L

r
R

The inner limits of the outer solutions may be taken as

X =  x+1! /E

Y = y/c

X =  x-1! /g
R

= y/s
R

The term Ux is written in outer coordinates since match-
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lim $ r! = tI! L + Q[knrL � kn2 + HL]
r~  -1, 0!

E.12.1

lim g r! = $ + Q[kn2 � Rnr + H
oR

r» �, 0!

E. 12. 2

+
lim $ r! = 8 - U + Q kn2 � knr !

L

r-+  -1! 0!

E.13.1

$  r! = B + U + Q knr � 2,n2!
R

E.13 ' 2

We may now find the source strength by writing the total

circulation in terms of the potential differences across each

region  i.e., the method presented. in Section

equation for the circulation becomes

The

+ Q[knr � Rn2+H ] � p � Q[kn2-knr +H
oL L L oR R R

+ C � Q [!I,n2+knr � Rnc] � C � Q [Kn2+Knr -2,nc]
L L L L

+ B + U + Q [knr -Ip.n2] � B + U � Q [kn2-2,nr ]
R L

+ C - Q [Rn2+knx -inc] � C � Q [Rn2+Knr -inc]
R R R R

E. 14

Cancelling terms in E.14 and solving for Q yields

E.15
HL HR 8Rn2 + Rn

E.5

Using E.15 instead of

lim

r~ �, 0!

~oR oL
Q



213.

in program MAIN yields the forces per unit velocity  setting
U = 1.0! on a cylinder oscillating in the horizontal plane.

If we write these forces as

F= f + if
1

we can identify f with the damping coefficient of the
1

cylinder and f with its added mass. In particular, if fl
2

and f are in units of lbs. force per foot per second
2

velocity, we may write the damping coefficient and the added

mass respectively

E.16.1
ll 1

E. 16. 2All = f2/ld

Haskind's relation for horizontal wave force may be

wr itten  Newman, 1962!

IF� E 17

This may be written in terms of the Morison mass co-

efficient C> as

2 F cosh KD 2 cosh KD
/~,

pgmR2Ka g v' v 11
E. 18

Table E. 1 shows values of C computed by the two methods.

The column marked C presents values computed via the wave

scattering program; the column marked C ' shows values com-

puted via the radiation solution and Haskind's relations.



MR/DKD

.50

.50

.50

.50

TABLE E.l

The difference between C and C ' is due entirely to

numerical errors. These results indicate, therefore, the

relative accuracy of the computer program used for calcula-

ting wave forces.

. 873

. 873

6. 817

6. 817

0.0 2.013

~ Ol 1.393

0.0 1.582

F 01 1.740

1 ~ 935

1.351

1.532

1.712



Appendices F, G and H have been omitted from

this report. They may be found in the original

Thesis or obtained from the author. Contact the

Department of Ocean Engineering, M.I.T.,

Cambridge, Massachusetts 02l39




